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Preface

This is Matt Dailis's1 work for Acoustics and Psy-
choacoustics of Music taught by Victor Zappi2 at
Northeastern University, Spring 2020.
In Section 1, I will describe my attempt at using

additive synthesis to simulate the sound of a guitar. I

1https://mattdailis.github.io
2https://toomuchidle.com/

jumped right into this without examining much prior
work, so my approach was a little naive and primitive.
I do explain concepts along the way, and I reference
some alternative approaches at the end.

In Section 2, I will give a more concise description
of edgetones and wind instruments, based largely on
what we covered in class.

The appendix contains a full program listing of my
octave program. It can also be found at https://

github.com/mattdailis/simulating-strings.

1 Simulating Strings

My intent is to attempt to simulate a guitar using
purely math. I wanted to know how big the gap is
between the theory I learned in class and the true
complexity of a real musical instrument. I pulled out
my notes from class, �red up my laptop, and decided
to give it a try!

1.1 Getting set up with Octave

For this project, I used GNU Octave, an open source
programming language and environment for mathe-
matical modeling, based o� of MATLAB.

Octave has an audioplayer function, which when
provided with a vector of �oating point numbers be-
tween −1 and 1, treats them as a waveform and plays
them back.

audioplayer (vector , bit_rate , bit_depth)

A sample is a discrete measurement of sound pres-
sure level (SPL) averaged over a prede�ned duration
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of time. The bit_rate variable represents the num-
ber of samples to play per second. I chose to set this
to be 44100, which is a standard bit rate used for
CDs.3 The bit_depth variable has to do with the
precision of the �oating point numbers themselves.

1.2 Pure tones and equal-amplitude

harmonics

My approach to simulating strings was to use addi-
tive synthesis4. This means that I attempted to sim-
ulate a vibrating string by building it up as a sum
of partials. To start, I generated a waveform for the
the fundamental frequency using octave's sinewave
function (See Listing 1). Given a vector size and a
period, it returns a set of values between -1 and 1 in
the form of a sine wave with the speci�ed period.

f1 = sinewave(bitRate * 4, bitRate / 440)

Listing 1: Octave provides a convenient sinewave

function, which asks for a vector size and a period

measured in number of samples

I de�ned my own convenience function puretone

which would take the bit rate, duration, and fre-
quency and return the corresponding sine wave (See
Listing 2).

function puretone(seconds , frequency)

sinewave(bitRate * seconds ,

bitRate/frequency);

endfunction

Listing 2: I de�ned my own puretone function which

allows me to think in terms of frequency instead of period

Now I had the ability to make pure tones, but I
wanted harmonics. A harmonic is a partial whose
frequency is an integer multiple of the fundamental.5

We usually only care about the �rst six harmonics
or so, because after that they start to get to very
high frequencies near the edge of human hearing. I
de�ned a createharmonics function that returns a
sum of six harmonics (See Listing 3). Notice that the
returned vector must be divided by six to make sure
the whole range of values is between −1 and 1.

344100 is a common sampling frequency because of the Sony

CD standard: https://en.wikipedia.org/wiki/44,100_Hz
4https://en.wikipedia.org/wiki/Additive_synthesis
5https://en.wikipedia.org/wiki/Harmonic

createharmonics(duration , fundamental):

f1 = puretone(duration , fundamental);

f2 = puretone(duration , fundamental * 2);

f3 = puretone(duration , fundamental * 3);

f4 = puretone(duration , fundamental * 4);

f5 = puretone(duration , fundamental * 5);

f6 = puretone(duration , fundamental * 6);

return (f1 + f2 + f3 + f4 + f5 + f6) / 6;

Listing 3: createharmonics generates the �rst six

harmonics and adds them together

I was so excited about the fact that my equations
were producing the pitches that I wanted that I cre-
ated a sample song using this function.

A3 = createharmonics (0.5, 220);

A4 = createharmonics (0.5, 440);

A5 = createharmonics (0.5, 880);

B4 = createharmonics (0.5, 495);

C5 = createharmonics (0.5, 523.26);

D4 = createharmonics (0.5, 293.33);

D5 = createharmonics (0.5, 293.33 * 2);

E4 = createharmonics (0.5, 330);

E5 = createharmonics (0.5, 660);

F5 = createharmonics (0.5, 348.84 * 2);

GS4 = createharmonics (0.5, 415.305);

aMinor = [A4 , (C5 + E5) / 2,

E4, (C5 + E5) / 2];

eMajor = [B4 , (E5 + GS4) / 2,

E4, (D5 + GS4) / 2];

dMinor = [A4 , (D5 + F5) / 2,

D4, (D5 + F5) / 2];

song = [aMinor , eMajor , aMinor , eMajor ,

dMinor , aMinor , eMajor ,

A4, E4, A3];

playSound(song , bitRate)

Listing 4: A sample song using the functions created so

far - it sort of sounds like music!

You can hear the result here:
http://mattdailis.github.io/strings/audio/string-

simulation-0.wav
After listening to the result, I could recognize this

as music, but it sounded nothing like a guitar. What's
missing?
First o�, in a string, the relative amplitudes of

the harmonics are not all the same.6 Secondly, for
a plucked instrument, the amplitudes of all of the

6I found this out by plucking a string on my guitar and

looking at the spectrum in the n-Track Tuner mobile app
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harmonics change over time, eventually diminishing
to silence. Lastly, the soundboard of the instrument
will act as a �lter a�ecting the output of the instru-
ment.7 Let's tackle these issues one by one.

1.3 Relative amplitudes of harmonics

First o�, the fundamental frequency of a plucked
string will always be the most prevalent harmonic.8

The relative amplitudes of harmonics of a plucked
string depend on the pluck location.

We model a pluck as a "kink" in the string.9 The
prevalence of each harmonic depends on whether the
initial kink location is at one of that harmonic's nodes
or antinodes. Put another way, it depends on the
similarity of the string shape at the moment of the
pluck to the shape of the resonant mode.

Similarity, in linear algebra, is de�ned as the dot
product between two vectors. The more "aligned"
those two vectors are, the higher their dot product.

If we take the fourier transform of the string shape,
we should get an idea for which frequencies are rep-
resented. Let's �rst de�ne the shape of our string.

Let's de�ne a kink in terms of a piecewise function.

Let k be the kink location whose value is between
0 and 1, and L be the length of the string.

y1 =
x

k
L, x ≤ kL

y2 =
1− x

L

1− k
, x > kL

The following pairs of graphs show the kink func-
tion on the left, and its FFT on the right. The only
axis worth looking at is the x axis of the FFTs - each
number corresponds to the harmonic index.

These images were generated using octave-online10

with the following call:

7Mathematical Modelling and Acoustical Analysis of Clas-

sical Guitars and Their Soundboards
8Intuitively, this is because a "kink" in a string has nodes

at the ends no nodes in between, which is similar to the shape

of the fundamental
9Slides day 23

10Every time I tried to use octave's plot function on my

computer, I got a segmentation fault. . .

v = kink (1000, 0.1)

bar(abs(fft(v-mean(v)))(1:10) (2:end))

Listing 5: This line of code generated the graphs below

Figure 1: kink(0.5) and its FFT

Notice that the fundamental is always the most
prominent, but the behavior of the rest of the har-
monics varies. Observe Figure 1 - the pluck location
is in the center of the string, which emphasizes odd
harmonics, and has no even harmonics because all
even harmonics have a node in the center.

Figure 2: kink(0.25) and its FFT

Moving the pluck location to the quarter point of
the string (Figure 2), we see more harmonics pop up,
but the fourth and eighth (and all multiples of four)
are still silent, because the kink location is at the
node of the fourth harmonic.

Figure 3: kink(0.1) and its FFT
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In Figure 3, all nine of the �rst harmonics are
present. The tenth is not pictured, but it would be
zero, because it has a node at the pluck location.

This is the result of scaling the harmonics using
the weights from the FFT:

http://mattdailis.github.io/strings/audio/string-
simulation-1.wav

After listening to this result, I found that it
sounded a little better - the fundamental was more
prominent than before. It still did not sound like a
physical string though.

1.4 Damping

When one plucks a string, it does not sustain the
sound for very long. Immediately, it starts to lose
energy to friction at the imperfect boundaries of the
string, as well as friction with the �uid (air) in which
it is vibrating.11 I hoped that adding damping will
at least make it sound plausible that the strings are
being plucked.

Let's focus on the kinetic energy lost due to the
motion of the bridge, since that is more signi�cant
than the energy lost to the air.12 The way we take
into account the bridge motion is by modeling it as
an impedance mismatch, similar to how we would
model a tube open on one end. This results in an
exponential decay.

function y = damping(x, dampingTime , bitRate)

y = 0.5 ^ (x / (dampingTime * bitRate));

endfunction

Listing 6: I found that a decay hal�ife of about 0.3 seconds

sounded good to me

In this model, all of the frequencies decay at the
same rate, which isn't necessarily accurate, although
looking at a the spectrum of plucking my guitar
string, I think this is a reasonable approximation.13

http://mattdailis.github.io/strings/audio/string-
simulation-2.wav

11The physics of vibrating strings - Giordano, Gould, To-

bochnik
12The physics of vibrating strings - Giordano, Gould, To-

bochnik
13obtained using the n-Track Tuner mobile app

1.5 Soundboard

Okay, we've now made a generic plucked string in-
strument, but what makes a guitar a guitar? One
of the aspects that has the biggest contribution to
the timbre of a stringed instrument is its soundboard.
A soundboard is a resonance chamber that takes the
input vibration from a string and transforms its fre-
quency spectrum, behaving as an acoustic �lter. In a
guitar, the string transfers its vibration through the
bridge and into the top of the guitar. The top of the
guitar is an idiophone14 that creates a pressure wave
inside the body as it vibrates. It is the modes of this
piece of wood plus the sound propagation inside of
the body that together create this acoustic �lter.15

To implement a �lter in octave, I intended to use
the signal library. While I did eventually manage
to install it, I did not have enough time to imple-
ment this part before the project deadline. How-
ever, I read some papers about soundboard design.
Luthiers install braces, which are strips of wood glued
to the soundboard to create areas of greater sti�-
ness, which encourages modes that have nodes in
those locations.16 That same paper included Figure
4, which shows the frequency responses of "good"
versus "bad" quality guitars. They both show peaks
around 110 and 220 hertz, though the good guitars
have higher amplitude peaks.

Figure 4: This diagram was taken from "Frequency Re-

sponse Function Of A Guitar - A Signi�cant Peak" By

Samo Sali

14at �rst I thought it was a membranophone, but I suppose

there is no tension involved
15https://newt.phys.unsw.edu.au/music/guitar/

guitarchladni.html
16"Frequency Response Function Of A Guitar - A Signi�cant

Peak" By Samo Sali
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1.6 Subtractive synthesis

When I got this far in the project, for the �rst time
I actually searched for "synthesizing guitar sound"
on the internet.17 I found that the most commonly
used algorithm for generating guitar sounds does not
use additive synthesis! Instead, it uses subtractive
synthesis, which means it starts with all possible fre-
quencies (i.e. white noise), and �lters them down to
the frequencies of a guitar.

1.6.1 The Karplus-Strong Algorithm

The Karplus-Strong algorithm18 is a way of cheaply
synthesizing guitar-like sounds using one or two sine
wave oscillators. It can be summarized by four steps
(see Figure 5)

1. Generate a short burst of white noise

2. Apply delay

3. Pass it through a �lter

4. Loop

Figure 5: Karplus Strong

The most important part of this algorithm is the
interaction of the delay in step 2 with the �lter in
step 3. The delay helps select the frequency, while
the �lter creates the timbre. The loop step allows
the sound to change over time.

17I should have started with this! Although the process of

discovery was also very instructive
18karplus-strong.pdf

2 Woodwinds: Edgetones

This section will give a shallow overview of wind
instruments, with a deep dive in the middle on
edgetones.
A wind instrument is similar to a stringed instru-

ment in that it has a sound source and a sound mod-
i�er. However, instead of having a vibrating sound-
board, wind instruments typically have a tube that
contains a one-dimensional air column through which
sound propagates as a longitudinal wave.19

2.1 Sound source

The sound source is responsible for generating a
stream of vibrating air. We can categorize this gen-
eration into three phenomena: free edge oscillation,
reeds, and vibrating lips. Here, we will only focus on
free edge oscillation, since this is most relevant to the
concept of edgetones.

2.1.1 Free edge oscillation

In free edge oscillation, a steady �ow of air needs to
hit a sharp object head-on (see Figure 6).

Figure 6: A narrow stream of air passes through an air-

way and hits a sharp edge head-on

When we talk about a "steady �ow of air," we are
talking about laminar �ow. Laminar �ow is when
a �uid moves in smooth layers (laminae) and each
layer is moving in the same direction as the whole
�uid, meaning there are no cross-currents or eddies.20

This �ow is laminar inside of the airway, but at some
distance from the airway it becomes turbulent �ow.

19A longitudinal wave oscillates in the same axis as it prop-

agates.
20https://en.wikipedia.org/wiki/Laminar_flow
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Turbulent �ow is when the motion of a �uid is chaotic
and changing. The laminar �ow gets a certain dis-
tance into the unconstrained air and loses its struc-
ture, and becomes turbulent.
If we place a sharp edge at approximately the dis-

tance from the airway at which the �ow naturally
becomes turbulent, we force the �ow to pick one side
of the edge. The eddies will increase in intensity on
that side and cause the �ow to �ip to the other side
(see Figure 7). This phenomenon will repeat in a
periodic fashion.

Figure 7: Edgetone illustration from textbook

We can describe the frequency of this periodic �uc-
tuation as a ratio between the the velocity of the air
�ow, v, and the distance between the airway and the
edge, d.

f ∝ v

d

This equation, however, is not 100% correct - the
frequency is not continuous. As velocity increases, at
a certain point, frequency will have a jump disconti-
nuity (See Figure 8). I do not fully understand why
this happens, but it is commonly used by musicians to
acheive higher frequencies.21 Notice the slope of the
lines - this is not very convenient for musicians, since

21musicians call this technique overblowing

it is hard to control your air velocity so precisely. We
will see a solution to this in the edgetones section.

Figure 8: Frequency increases stepwise.

2.2 Sound modi�er

Many wind instruments have a long tube called
the bore that houses the air column. The air col-
umn vibrates at resonant modes that depend on the
length22, L, of the bore. c is the speed of sound in
air.

fn =
nc

2L

2.2.1 Edgetones

In a woodwind instrument, whose sound source is an
airway followed by an edge, the gap between the air-
way and edge is one of the two open ends of the tube.
We learned that tubes with open ends allow resonant
modes with antinodes at the ends. This means that

22assuming no holes
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after the initial "transient" part of the sound, the vi-
bration of the air column will induce a vibration at
the edge. This is called an edgetone.
An edgetone is a form of coupling, like sympathetic

vibrations in strings. It forms a feedback loop, and
most interestingly, it causes the source to vibrate at
the resonant mode of the bore. This is signi�cant,
because if you remember from Figure 8 and the cor-
responding equation, the frequency of the source de-
pended on air velocity and distance, which are not
properties of the bore! The vibration of the air col-
umn has a high enough amplitude to overcome the
eddies of the turbulent �ow at the edge and force
the �ow to oscillate at a frequency dictated by the
properties of the bore.
Does this mean that the air velocity and edge dis-

tance have no e�ect on the output frequency of the
instrument? Not quite. While it is true that for small
changes in velocity, the frequency remains constant
(dictated by the resonant mode of the bore), the jump
discontinuities will have an e�ect on the output fre-
quency. The steps in frequency at the edge will help
select which resonant mode of the bore will have the
highest amplitude. Examine Figure 9. There are
now ranges of values of v

d that result in the same
frequency.23

2.3 Modifying the modi�er

Unlike an acoustic guitar, which typically leaves the
soundboard the same and changes the sound source,
woodwinds usually come with the ability to dynami-
cally modify the acoustic properties of the bore. The
way they do this is with holes. Holes in the bore force
nodes at those locations because they �x the pressure
at the hole location to be approximately equal to the
atmospheric pressure outside of the bore.

3 Bibliography

� The physics of vibrating strings - Giordano,
Gould, Tobochnik

23This is very convenient for musicians, because it reduces

a continuum of frequencies to a discrete set. Frets on a guitar

perform a somewhat analogous function.

Figure 9: The edgetones �atten pitch change locally, but

still react to the jump discontinuities

� Digital Synthesis of Plucked-String and Drum
Timbres, Karplus and Strong

� Response Variation in a Group of Acoustic Gui-
tars - Mark French

� Simple model for low-frequency guitar function

� Frequency Response Function Of A Guitar: A
Signi�cant Peak - Samo Sali

� Mathematical Modelling and Acoustical Analy-
sis of Classical Guitars and Their Soundboards

� Loaded String simulation source code

4 Appendix

4.1 Program listing

The following is the source code for the octave pro-
gram I wrote for the simulating strings section.

#pkg load signal
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function y = damping(x, dampingTime , bitRate)

y = 0.5 ^ (x / (dampingTime * bitRate));

endfunction

function y = createDamping(bitRate , duration ,

dampingTime)

y = arrayfun(@(x) damping(x, bitRate ,

dampingTime), [1 : bitRate * duration ])

;

endfunction

function playSound(vector , bitRate)

player = audioplayer (vector , bitRate , 16);

play (player);

while(isplaying(player))

endwhile

endfunction

function y = puretone(bitRate , seconds ,

frequency , phaseShift =0)

y = sinewave(bitRate * seconds , bitRate/

frequency , phaseShift);

endfunction

function y = createtone(bitRate , duration ,

frequency , dampingFactors)

y = puretone(bitRate , duration , frequency)

.* dampingFactors;

endfunction

function y = createharmonics(bitRate ,

duration , fundamental , weights)

dampingFactors = createDamping(bitRate ,

duration , 0.3);

M = [];

## Build up matrix where each row is

another harmonic

for index = 1 : length(weights)

M = [M; weights(index) * createtone(

bitRate , duration , fundamental *

index , dampingFactors)];

endfor

## Collapse them at the end

S = sum(M);

y = S / max(S);

endfunction

function v = ffttest(bitRate , X, checkFreq)

L = length(X);

Y = fft(X);

P2 = abs(Y / L);

P1 = P2(1:(L / 2) + 1);

checkIndex = checkFreq * L / bitRate;

[checkVal , checkIndex2] = max(P1(checkIndex

- 5 : checkIndex + 5));

v = checkVal;

endfunction

## location must be between 0.0 and 1.0

function y = kink(L, location)

k = location;

x = (0 : L);

y1 = x / (k * L);

y2 = (1 - (x / L)) / (1 - k);

y = [y1(1:k*L), y2(k*L+1:L)];

endfunction

## Returns the first 10 harmonic weights for

the given pluck location

function y = getHarmonicWeights(pluckLocation

)

v = kink (1000, pluckLocation);

X = abs(fft(v - mean(v)));

y = (X / max(X))(2:10);

endfunction

function filtertest ()

sf = 800; sf2 = sf/2;

data =[[1; zeros(sf -1,1)],

sinetone (25,sf ,1,1),

sinetone (50,sf ,1,1),

sinetone (100,sf ,1,1)];

[b,a]= butter ( 1, 50 / sf2 );

filtered = filter(b,a,data);

endfunction

function main()

bitRate = 44100;

weights = getHarmonicWeights (0.15);

duration = 2.0;

A3 = createharmonics(bitRate , duration ,

220, weights);

C3 = createharmonics(bitRate , duration ,

523.26 / 2, weights);

E3 = createharmonics(bitRate , duration ,

330, weights);

E2 = createharmonics(bitRate , duration , 330

/ 2, weights);

aMinor = [A3 , (C3 + E3) / 2, E2, (C3 + E3)

/ 2];

song = [aMinor ];

playSound(song , bitRate)

## Uncomment the next line to save the

audio to a file
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## audiowrite (" with_damping.wav", song ,

bitRate);

endfunction

main()
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