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V ~brating strings are key components of many musical 
mstruments, such as guitars, violins, and pianos. 

Hence, if we want to understand the physics of these in
struments, it is reasonable to begin with the physics of a 
vibrating string. To a first approximation, all strings are 
created equal, as all are described by the wave equation 

azy azy 
- 2 

at'l-c axz· (1) 

where y, the displacement of the string from its equilibrium 
position, is a function of the position x along the string and 
the time t. Because guitars sound different from violins, and 
both sound different from pianos, we know that there must 
be more to the story than (1). This column will explore 
some of the physics that is important in musical instru
ments. Broadly speaking, the additional physics falls into 
two categories: the nature of how the string is excited, and 
small corrections or additions to the wave equation. 

The wave equation (1) can be readily derived from 
Newton's second law. The parameter c is equal to .JTJ JL, 
where T is the tension and JL is the mass per unit length of 
the string. It is straightforward to show that the solutions to 
(1) have the form y==f(x±ct), so that cis the wave speed. 
To construct a numerical scheme for solving (1), we dis
cretize x and t in units of Ax and At, so that y(x,t) 
--. y(iAx,nAt)--. y( i,n ), and write the derivatives in finite 
difference form: 1 

· 

y(i,n + 1) + y(i,n -1)- 2y(i,n) 

(At) 2 
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The = symbol is used to emphasize that (2) is only ap
proximate; as we shall see shortly, there are correction 
terms that might be important. We can rearrange (2) as 

y(i,n + 1) == 2(1- r2)y(i,n)- y(i,n -1) 

+r2[(y(i+l,n)+y(i-1, n)], (3) 

where r=cAt/ Ax. From the form of (3) we see that, if we 
know the string configuration at time steps n and n- 1, we 
can calculate the new configuration at time step n + 1. The 
initial conditions depend on how the string is excited. 

Some results obtained using algorithm (3) are shown in 
Fig. 1. The initial string profile (shown at the top of Fig. 1) 
is triangular, with the string at rest, as would be appropriate 
for a plucked guitar string. That is, we take the string profile 
at time steps n == 0 and n == 1 to be the triangular shape 
shown at the top in Fig. 1. The simulation begins with the 
calculation of the string position at the next time step, n = 2. 
The kink associated with this plucked profile is seen to split 
into two separate kinks, one propagating to the left and one 
to the right, which reflect from the ends of the string. In this 
simulation the ends of the string are kept fixed, and so the 
reflections are inverted. 

An astute reader will recognize that the form of (3) 
bears a strong resemblance to a no-frills Euler algorithm. 
Although the Euler method is a simple and useful approach 
for many problems, it is known to fail miserably for some 
situations that involve oscillatory motion, such as a simple 
harmonic oscillator or planetary motion.1 Wave motion is 
also a type of oscillation, and so we might expect that an 
Euler approach would fail here too. However, the results in 
Fig. 1 suggest that it works quite well. Understanding why 
it works so well provides a useful lesson in numerical 
methods. 

· Many algorithms for treating differential equations in
volve a discretization procedure and an associated step size. 
A typical case is a point mass moving according to 
Newton's second law with a time step At. Smaller values of 
At generally yield more accurate results (provided that 
roundoff errors are not a problem) at the cost of increased 
computational time. In the vibrating-string problem we 
have discretized two variables, and so we have two step 
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sizes, at and ax, to consider. Although you might expect 
that smaller step sizes are always better, life is not quite this 
simple. 

For the calculation in Fig. 1 we chose the step sizes so 
that ax I at= c (that is, r = 1 ). It turns out that algorithm (3) 
is exact for this special ratio of the step sizes. The reason 
can be appreciated from the physics of the problem. The 
physics, and herice the wave equation, are local in the sense 
that a particular piece of the string is affected by only ad
jacent pieces. Consider a disturbance of the string at spatial 
location i. According to (3), this disturbance will propagate 
one spatial unit at the next time step to i ± 1, move to i ± 2 
at the following time step, and so on. Thus, the algorithm 
permits a disturbance to propagate at a speed of axl at. It is 
clearly good if this speed exactly matches the speed of all 
solutions. We are thus not surprised that the algorithm 
works best for ax I at= c, and it is not difficult to show that 
the corrections to (2) vanish for this ratio of the step sizes. 

The behavior for other values of r can be understood 
from similar arguments. If r =cat I ax is less than unity, the 
algorithm will permit a disturbance to travel faster than c, 
which might be cause for concern. However, it turns out 
that the amplitude of the disturbance that travels at the 
maximum speed clr allowed by1the algorithm is very small. 
It can be shown from (3) that this amplitude is smaller than 
the amplitude of the "true" disturbance (the one that moves 
with a speed c) by an amount that decreases by a factor of 
r 2 after each time step, and thus this amplitude rapidly 
becomes negligible. Hence, the algorithm will still perform 
acceptably (although not be exact) when r< 1. In the re
gime r > 1, a similar argument implies that the fastest com
ponent grows by a factor of r2 after each time step, and thus 
the numerical solution rapidly becomes unstable. The algo
rithmic requirement that the parameter r be less than or 
equal to unity is known as the Courant condition.2 Its physi
cal origin is particularly easy to appreciate in the context of 
the wave equation, and our argument also suggests how to 
adapt this algorithm to treat variants of (1), such as the case 
of a stiff string. 1 

Tone of a plucked guitar string 
To understand the nature of the tone produced by our 

simulated guitar, we must consider how the vibration of the 
string is converted into sound. Because the radius of a typi
cal string is much smaller than the wavelength of any sound 
it might produce, the amount of sound generated by the 
direct interaction of a string with the surrounding air is 
negligibly small? For an acoustic guitar, sound is produced 
by the vibration of the body of the instrument. One end of 
the string is terminated at the bridge, which is attached to 
the top plate of the guitar (see Fig. 2). The force from the 
string on the bridge causes motion of the entire guitar body, 
which in turn produces sound. To treat this problem in full 
would require that we model the vibrations of the body, a 
problem too ambitious to tackle here. Instead, we make the 
rather drastic assumption that both the body motion and the 
sound pressure amplitude are proportional to the force on 

?-. 

0.4 0.6 
x(m) 

Figure 1. Waves propagating on a string with fixed ends. The string has a 
length of 0.65 m with c=200 m/s, as would be appropriate for a guitar 
string. The simulation used !lx=O.OOJ m, and l::.t=!lx/c. The initial string 
profile is at the top. Successive traces from top to bottom show the string 
at progressively later times. For clarity, each trace is shifted downward 
from the previous one. 

the bridge in the direction perpendicular to the plane of the 
top plate of the guitar (the plate to which the bridge is 
attached). The idea is that the top plate acts like a large 
speaker, and so it is the perpendicular motion that produces 
sound most efficiently. This force is equal to the component 
of the force from the string in the perpendicular direction, 
which is the tension in the string times ay I ax (the slope of 
the string) at the bridge. This quantity can be readily cal
culated from the simulation, and its behavior for the 
plucked guitar string is shown in Fig. 2. 

The power spectrum of the bridge force is also shown 
in Fig. 2. As expected, we see a harmonic pattern of peaks 
at frequencies n f 1, where f 1 = 150 Hz is the fundamental 
and n is an integer. The force on the bridge is essentially a 
square wave (which should be no surprise given the wave
forms shown in Fig. 1), and so the force has substantial 
strength at high frequencies, which causes the amplitudes of 
the harmonics to fall rather slowly with n. Note that these 
amplitudes do not vary monotonically with n, and some are 
very weak (such as the n = 10 harmonic, which would be 
near 1500Hz). This behavior can be understood in terms of 
the symmetry of the initial string profile as discussed in Ref. 
1. 

Nature of a piano tone 
Our calculation for a plucked guitar string did not 

really require a numerical solution; the results could have 
been obtained from the original plucked wave form with a 
little Fourier analysis. However, the situation for a piano 
makes a simulation imperative. A piano string is set into 
motion by the blow from a wooden mallet covered with a 
compressible layer of felt. Although our first urge might be 
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to treat the felt as a simple spring describable by Hooke's 
law, it turns out that the physics is not this simple. Experi
ments have shown that the restoring force for felt depends 
on the rate at which it is compressed and the preceding 
compression history. Because of this hysteresis, a full treat
ment of the piano-hammer problem has not been worked 
out. Here we shall describe an approximate approach, 
which is essentially equivalent to the best that has been 
done to date.4 

If we ignore the hysteresis, the force of a piano hammer 
on a string is given approximately by F hammer= KzP, where 
z is the amount that the felt is compressed. The exponent p 
has a very un-Hooke-like value of p-2.5, although p de
pends somewhat on the way the felt is processed. We can 
add the hammer to the simulation by treating it as a mass 
that strikes the simulated string at a certain location, with 
the hammer-string interaction force F hammer. To implement 

8~----~------~------~------. 
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Figure 2. (a) The force on the bridge of our numerical guitar as a function 
of time from simulation shown in Fig. 1. The inset shows a schematic of an 
acoustic guitar. (b) The power spectrum of the bridge force. 
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this scheme, we rewrite the wave equation (1) in a form that 
emphasizes its connection with Newton's second law: 

azy a2y 
flmatz=c 2flmy;z+Fh(x). (4) 

The left-hand side of (4) is the mass times the acceleration 
for an element of the string of length flx and mass 
flm = Pstringflx7Ta

2
, where a is the radius of the string. The 

first term on the right is the restoring force due to neigh
boring elements of the string, and the second term is the 
force due to the hammer given by 

F h(x) = g(x)F hammer= g(x)KzP, (5) 

where g(x) is a function that describes how the hammer 
force is distributed along the string. 

The quantities g(x) and z need explanation. We shall 
take the hammer strike point to be at a location Lstring/7 
from one end of the string (a value similar to that used in 
most pianos). Because a hammer is not a point object, the 
force will be distributed to neighboring locations as well. 
This distribution can be modeled by letting g(x) be a 
Gaussian function centered at the x = L string/7, with a full 
width of 1 em (a typical value). The variable z is the 
amount that the felt is compressed; it depends on the ham
mer displacement, Yhammen and the string displacement at 
the hammer position, z = Ybammer- y string. The hammer dis
placement is governed by Newton's second law: 

d
2
Yhammer 

m hammer d 
12 

= F hammer (6) 

with the hammer force given above. 
If we write the derivatives in (4) as finite differences, 

we can derive a difference equation similar to (3). This 
relation can be used to calculate the motion of the string, 
and a simple Euler method can be employed for the hammer 
( 6). The strategy is to begin at t = 0 with the string at y = 0 
everywhere and with an initial velocity for the hammer. 
When the hammer meets the string, the hammer felt is com
pressed by an amount equal to the difference between the 
hammer position and the string position at the strike point. 
This compression results in an interaction force that acts on 
both the string and the hammer, causing the string to move 
and the hammer to rebound. Some results from such a simu
lation are given in Fig. 3, which shows the string profile 
during the initial hammer-string impact (0.3 ms), just after 
the hammer falls away from the string (2.1 ms), and while 
the string is vibrating freely (3.0 ms). We have used string 
and hammer parameters appropriate for the note 
middle C on a piano (see the caption for Fig. 3 for the 
parameter values) . The calculated hammer-string contact 
time is 2.1 ms, which agrees well with measured values. 

As with a guitar, this string vibration leads to sound 
through the motion it causes at the bridge. In a piano, the 
strings are attached to a bridge, which is in turn supported 
by the soundboard. Roughly speaking, the soundboard 
plays the role of the top plate of the guitar, as sketched in 



t = 0.3 ms 

3.0ms 
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Figure 3. Simulation of a piano string. Left: string profiles at three different times. Middle: the force on the bridge as a function of time. Right: the spectrum 
of the bridge force. The vertical scale is logarithmic and arbitrary; each tick mark is an order of magnitude. The string and hammer parameters (after Ref. 

4) are appropriate for a string near middle C played mezzo forte: Lstring=0.62 m, T=670 N, p,=0.006 kg/m, mhammer=0.003 kg, p=2.5, 

K =5 X109 N!m11P, and fix= Lstring/100. The initial hammer velocity was 2 m/s, and the hammer struck the string at a distance 6Lstringf7 from the 
bridge. 

Fig. 2. The force on the bridge of our simulated piano has a 
more complex form than we found for a guitar, demonstrat
ing the crucial importance of the method used to excite the 
string. This form is also reflected in the spectrum of the 
piano-string signal, as the high harmonics are somewhat 
weaker than found in the guitar spectrum. This difference is 
one of several reasons why the two instruments sound dif
ferent. 

Damping and nonlinearity 
The string vibrations we have encountered so far lack· 

an important feature: they do not decay with time. Our 
simulations have not included any energy-loss mechanisms, 
an assumption that is not very realistic. For guitar and piano 
strings we know that the sound typically decays within a 
few seconds, and the nature of this decay is important for 
our perception of these tones. There are several effects that 
contribute to the damping of string vibrations in these in
struments. We now consider two sources of damping that 
illustrate different physical mechanisms. 

One source of damping is associated with air drag on 
the string. Stokes considered this problem nearly 150 years 
ago and calculated the drag force on a cylinder moving 
through a fluid.5 He was interested in the drag force due to 
the viscosity of the fluid and found that this force is pro
portional to the velocity. However, for a typical piano string 
a larger contribution to the drag arises from a different 
mechanism that yields a drag force that varies more nearly 
as the square of the velocity. This order-v 2 contribution to 
the drag force is associated with the kinetic energy imparted 
to the air as it is pushed by the string and is a well known 
result1 for objects moving at speeds of typically 1-30 m/s. 
Interestingly, while the effect of the viscous force calcu
lated by Stokes has been discussed for stringed 
instruments,3 it appears that no one, until now, has esti
mated the (larger) effect of the drag force, which is qua
dratic in v. 

The corresponding simulation is straightforward; we 

only need to add a damping term to the wave equation. It is 
convenient to include the damping force using Newton's 
second law as we did in (4). We find 

a2y a2y 
A.m-2 =c2Am-2 +Fh(x)+Fdrag' (7) at ax 

where the last term on the right is the force due to air drag 
on an element of the string. It has the form1 F drag 

= -CpairAv 2
, where Pair is the density of air, A =2c:rlix is 

the area of an element of the string, which determines how 
much air is displaced by the string, and C is a constant, 
which has a value near 1/2. We have repeated the simula
tion of Fig. 3 with this drag force included. The resulting 
slow decay of the string vibration can be seen from the time 
dependence of the root-mean-square vibrational amplitude, 
which is shown in Fig. 4. We see that the calculated tone 
persists for many seconds, which is much longer than found 
with a real piano. Not surprisingly, we shall see that another 
damping mechanism is more important (that is, leads to a 
faster decay). Even so, an interesting feature of the damping 
due to air drag is that it is nonlinear, which makes a nu
merical approach necessary. This nonlinearity causes dif
ferent frequencies to be damped at different rates, and so 
the spectrum of the tone changes with time. It also causes 
the decay to be nonexponential. 

Although we have already touched briefly on the force 
of the string on the bridge and its role in sound production, 
we have so far assumed that the bridge is perfectly rigid in 
our simulations. Of course, this assumption cannot be 
strictly true, because the bridge must move at least a little if 
any sound is to be generated. Hence, our simulation should 
allow the bridge end of the string to move. The work done 
by the string on the bridge causes a transfer of energy to the 
bridge and is a mechanism for energy loss. A complete 
simulation would treat the vibrations of the bridge and the 
board on which it is mounted. Such a treatment would be 
very ambitious and has been carried out for a guitar,6 but 
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not (yet) for a piano. Here we will treat the bridge motion in 
a simple, but reasonably accurate, way. 

To proceed, we need an equation of motion for the 
bridge. Our first thought might be to treat it as a simple 
mass, or a mass connected to a spring, but a better approach 
involves a quantity known as the mechanical impedance, Z. 
As with the electrical impedance, Z is useful in discussions 
of the mechanical response in the frequency domain. If the 
force on the bridge has a single frequency, we can write 

Fbridge 
v bridge= -

2-. (8) 

In general, Z is complex, which is a way of saying that the 
force on the bridge and its velocity are not in phase with 
one another. In most cases Z is also a function of frequency, 
and so (8) is not very useful as an equation of motion in the 
time domain. However, it turns out that the behavior of Z 
for a real piano can be used to our advantage. Experiments 7 

show that at frequencies from about 100 Hz up to several 
kilohertz, Z for a piano is approximately independent of 
frequency and has a value near 103 kg/s. If we make the 

1~Ssumption that Z is real, Vbridge and F bridge will always be 
:m phase, and the two will be proportional to each other, 
even in the time domain. With these assumptions we can 
use (8~ as an. equation of motion for v bridge, and thus obtain 
the bndge displacement as a function of time. The bridge 
displacement is also the displacement of one end of the 
string. We note again that because the force on the bridge 
and the bridge velocity are in phase, energy will be trans
f~rred ~rom the string to the bridge. Adding the bridge mo
hon to our model gives the result shown in Fig. 4. The 
string decay is seen to be exponential, with a decay time of 
about 1 s. This result is in jood accord with the decay time 
found for real piano tones. 

For a piano and an 
acoustic guitar, damping 

due to bridge motion is more 
important than the effect 

due to air drag. 

For a piano and an acoustic guitar, damping due to 
bridge motion is more important than the effect due to air 
drag, but this mechanism may not be important for all in
struments. For example, the end supports in an electric gui
tar are much more rigid than those of an acoustic instru
ment, and so air damping may be important in that case. We 
also mention that many other effects contribute to the decay 
of piano and guitar tones. In fact, this decay is often not 
purely exponential, and so our model is not complete, al
though it is a reasonable start. 
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Figure 4. Damping of .~ piano string: the root-mean-square vibration 
amplitude as a function of time. The parameter values are cr=0.5 mm, 
Z=JOOOkg/s, Pair=l.2kg!m3

, and a drag coefficient C=l/2. The other 
string and hammer parameters are the same as in Fig. 3. 

Longitudinal string vibrations 
In our discussion of damping we found that air drag 

gives rise to a nonlinear term in the wave equation. How
ever, this nonlinear term was found to have a fairly small 
effect on the motion of a piano string. It turns out that there 
is another source of nonlinearity, and this makes a very 
perceptible contribution to the sound produced by guitars 
and pianos. Our original wave equation (1) was derived 
assuming that the perpendicular string displacement y is 
small. This assumption allows us to treat the tension T as a 
constant. Although this assumption is true to lowest order in 
y, the tension must increase when the string is displaced 
from its resting state, and furthermore, T will in general 
vary with position along the string. Because the wave speed 
is a function ofT, this change ofT gives rise to a number 
of nonlinear additions to (1). Moreover, a transverse dis
placement of the string can produce longitudinal string mo
tion, which has the form of a compressional wave (much 
like a sound wave). Before we proceed to include this non
linearity in our simulation, we point out that its effects can 
be readily heard for a guitar. The initial "twang" of a guitar 
tone, which is especially noticeable when a string is 
plucked forcefully, is due to this increase in the tension. 

. Deriving the nonlinear wave equation for a string re
quues some care so that the higher-order (nonlinear) terms 
are included consistently. It turns out that to second order 
that is, when terms that are both linear and quadratic in th~ 
transverse string displacement and its derivatives have been 
included, the wave equation for the transverse displacement 
is identical to our original wave equation (1). However, for 
the longitudinal displacement we find the wave equation8 

a2
w 2 a2

w c~ a (ay) 2 

at2 =c.f ax2 + 2 ax ax ' (9) 
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where w is the longitudinal displacement of the string from 
its equilibrium position and c ~ is the longitudinal wave 
speed. (Note that here we also assume that c~~c, which is 
well satisfied, by an order of magnitude or more, for a 
typical string.) Equation (9) is similar in form to (1) except 
for the last term on the right, which is a nonlinear function 
of the transverse displacement y . The origin of this term can 
be understood from Fig. 5. The tension at a point along the 
string is given by 

EA 8 ds 
T=T0+-

dx ' 
(10) 

where T0 is the nominal tension, E is Young's modulus, 
As= TTa2 is the cross-sectional area of the string, and ds is 
the amount the string is stretched at that point. [Equation 
(10) follows from the definition of the Young's modulus.] 
From Fig. 5 we can see that ds is given by 

1( ay)
2 

ds= ~dx2 +dy 2 -dx=- - dx. 
2 ax 

(11) 

The longitudinal force on an element of the string is 

aT EAs a(ay)
2 

T(x+dx)-T(x)= -dx=--- dx, . ax 2 ax ax 
(12) 

where we have kept terms only to second order in y and its 
derivatives. If we use the fact that c ~= ~EAs I f.L, we obtain 
the nonlinear term in (9). 

The longitudinal string motion can be added to our 
simulation by treating w( i, n) in much the same way as we 
treated y ( i, n). We can write ( 9) in a finite-difference form 
and solve for w( i, n + 1) in terms of the longitudinal and 
transverse displacements at earlier times. The result is simi
lar to (3), with the (nonlinear) terms involving y(i,n) acting 
as an effective force that drives the longitudinal motion. 
One slight complication concerns the question of spatial 
and temporal step sizes. We have seen that to ensure nu
merical stability (and have an exact algorithm) for the trans
verse wave equation we arrived at the condition 11xl 11t = c, 

T(x+ dx) 

dy 

T(x) 

dx 

Figure 5. Forces on an element of the string. The increase in the tension 
is proportional to ds, the amount the string is stretched. 

and we are led to a similar condition for the longitudinal 
wave equation. Because c ~ is much greater than c, we are 
forced to use a much smaller time step to ensure the stabil
ity of the longitudinal solution. 

There are several ways to deal with this complication; 
one is to simply use a much smaller time step for the cal
culation of both the longitudinal and transverse displace
ments. However, we would then have to give up the good 
accuracy of our algorithm for the transverse displacement, 
which is obtained only when the condition 11xl 11t = c is 
satisfied. A second approach is to use different time steps 
for the transverse and longitudinal parts of the problem. 
That is, we employ a time step 11t=l1xlc for the calcula
tion of y and a much smaller time step 11t~= 11xlc~ for the 
calculation of w. Because y enters the longitudinal calcu
lation, we have to be careful how we do this. It is conve
nient to choose the ratio 11tl 11t~ to be an integer (which is 
never a poor approximation because c ~I c ~ 1), so that for 
each update of y [each iteration of (3)], we update the 
longitudinal displacement 11tl 11t~ times. Alternatively, we 
can interpolate (in time) the values of y for use in the 
equation of motion for w. Both approaches are numerically 
quite stable. 

Some results of such a simulation are shown in Fig. 6. 
The transverse force on the bridge is the same as shown 
earlier; it does not change because, as noted above, to sec
ond order in the nonlinearities, the transverse wave equation 
is still (1). It is worth noting that, while the hammer made 
first contact with the string at t = 0 in Fig. 6, the transverse 
pulse did not reach the bridge until t~ 1.5 ms. This is the 
time required for a transverse disturbance, which moves at 
the speed c, to travel from the hammer contact point to the 
end of the string. The new result is for the longitudinal force 
on the bridge, which exhibits two important features. The 
first is that this "signal" arrives at the bridge well in ad
vance of the transverse force. Of course, we could have 
expected this, because the speed of a longitudinal distur
bance, c ~ , is much greater than c. Hence, the initial sound 
will be dominated by the longitudinal vibrations. A second 
important feature of Fig. 6 is that the longitudinal force 
signal contains a substantial portion of its strength at high 
frequencies. This also can be understood from the fact that 
ct'~c. We can be quantitative by comparing the power 
spectra of the initial 10 ms of the two force signals. The 
frequency resolution for these spectra (Fig. 6) is not as good 
as in the spectra of Fig. 3 because we have analyzed only a 
short segment of the time signal; for this reason the well
defined harmonics discussed earlier are not evident here. 
The spectrum of the transverse force falls rapidly with fre
quency, while the longitudinal spectrum is approximately 
flat out to several kilohertz. Hence, the longitudinal "at
tack" part of the tone has a different spectral composition 
than that of the transverse portion. 

Our simulation of the longitudinal string vibrations has 
omitted several important effects. One effect concerns the 
other transverse mode of the string. It turns out that it too 
can be excited, and it appears to play an important role in 
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guitars and pianos. In addition, we have ignored the ques
tion of how a longitudinal force on the bridge gives rise to 
sound. For a transverse force the answer is (at a qualitative 
level) obvious; it causes the bridge and soundboard of the 
instrument to move like a large speaker. It is not so obvious 
how a longitudinal force produces sound from such a 
speaker. In fact, a treatment of this part of the piano prob
lem has not been given (but we are working on it). Never
theless, the importance of longitudinal string vibrations 
and their spectral composition are firmly established 
experimentally,9 and the essential features of those experi
mental results are reasonably well described by the simula
tion we have given here. 

This column has touched on only a few of the interest
ing problems that arise with vibrating strings in musical 

The importance of 
longitudinal string vibrations 
and their spectral composition 

are firmly established 
experimentally. 

instruments. Some of these problems involve what might 
seem, at first glance, to be small modifications of the basic 
wave equation (1). However, they have a substantial impact 
on the sound that is produced. After all, most people have 
no trouble distinguishing a guitar from a piano, and even 
two pianos do not necessarily sound alike. Hence, a careful 
treatment of these small modifications is essential. Because 
of the nonlinear aspects of these problems, and also the 
complex geometries of most musical instruments, an ap
proach based on computer simulations is extremely useful 
for dealing with the calculations that arise. 

Suggestions for further study 
(1) Repeat the calculation shown in Fig. 1, but let the ends 

of the string be completely free . This condition would 
not be relevant for a vibrating string, but might be ap
plicable to a wind instrument. You should now observe 
that the reflected waves are not inverted. 

(2) In the calculation of Fig. 1 we assumed that the string 
was held fixed prior to t = 0 and released from rest. This 
condition produced left- and right-going kinks, that is, 
excitations. Set up initial conditions that produce an 
excitation that travels in only one direction. Hint: You 
will need to specify the proper initial velocity. 

(3) In all our simulations we have assumed that the string is 
perfectly flexible. Real strings have some stiffness, al
though it is small for the strings used in musical instru-
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ments. The presence of stiffness leads to a modified 
wave equation of the form 

azy =cz[azy -E a4yl 
a? ax2 ax4 , (13) 

where the stiffness parameter E depends on the Young's 
modulus, the radius of the string, and other factors. 
Although E is usually small (a typical value is 
E~ 1.5X 10-5), stiffness has an important effect be
cause it makes the system dispersive. That is, the wave 
speed now increases slightly as the frequency is in
creased, and so the string no longer produces a purely 
harmonic spectrum. This dispersion also upsets the sta
bility of our algorithm, making it necessary to use val
ues of the parameter r less than unity. Calculate the 
spectrum of a vibrating string described by (13) and 
determine how much the peaks in the spectrum are 
shifted from a perfect harmonic sequence. Further de
tails of this calculation (and, in particular, how to deal 
with the fourth derivative in (13)) are given in Refs. 1, 
3, and 4. 

(4) To do a better job of modeling an acoustic guitar, we 
need to treat the bridge more realistically. A full treat
ment of this motion would involve the vibrations of the 
body of the guitar, and given its complicated geometry, 
this problem is very difficult.6 However, to a rough 
approximation (which is reasonable at low frequen
cies), we can model the bridge as an oscillator with 
several resonant frequencies . For simplicity, assume 
that it is a single oscillator described by the equation of 
motion 

d2
y b dYb 

mb--;JF=F-k01b-Rbdt' (14) 

where Yb is the displacement of the bridge, mb the 
(effective) mass of the bridge and top plate, F is the 
force from the string, kb is the spring constant of the 
oscillator, and Rb is a damping coefficient. Include this 
mechanism in the simulation [in place of (8)], and ob
serve how it affects the spectrum. Typical parameters 
for a guitar are mb=0.15 kg, kb= 1.5 X 105N/m, and 
R b = 8 kg/s. The other string parameters were given ear
lier in connection with our guitar simulation. 

(5) A notable feature of the hammer force (5) is that it is a 
nonlinear function of the amount the felt is compressed, 
z. Physically the nonlinearity means that the felt be
comes effectively stiffer, and the force larger, the more 
the felt is compressed. The nonlinearity also has an 
important effect on the piano tone. Explore this effect 
by comparing the spectrum obtained with a small ham
mer velocity to that found with a large hammer velocity 
(values of 0.5 and 4 m/s are realistic choices). You 
should find that the louder note has more strength· in the 
high harmonics in comparison to the softer note. Hence, 
a loud note does not just have a larger volume, but its 
spectrum (that is, its timbre) is also different. Explain 
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Figure 6. Left: transverse and longitudinal forces for the piano bridge as functions of time. Right: the power spectra of the forces on the left. The vertical 
scale is logarithmic and arbitrary; each tick mark is an order of magnitude. The Young's modulus was chosen to be 2 Xl011 N/m 2, as is appropriate for 
a steel string. 

this effect in terms of the nonlinearity of the hammer 
force. It is interesting to listen to the calculated tones. 
Assume that the sound pressure is proportional to the 
bridge velocity. To listen to your result, you need to 
convert the data for the sound pressure as a function of 
time to a format that can be played on your computer's 
hardware. On my Sun workstation this conversion can 
be done with the soundtool program. Another approach 
is to use a Unix program such as sox (short for "sound 
exchange") to convert the data to a common sound 
format such as AIFF, which can be played by one of the 
many sound utilities available for personal computers. 
It is convenient to use a sampling rate ( Ll t- 1

) of 
22 kHz, so that the result matches the rate available 
with standard hardware. 

( 6) So far we have considered the motion of only a single 
string. However, guitars and pianos contain many 
strings, and in the case of pianos most notes involve 
three strings. Because all the strings are in contact with 
the bridge, the bridge motion mediates the interaction 
between strings. Add a second string to the calculation 
associated with (8) and Fig. 4. Use a hammer to excite 
one string and calculate how much motion is induced in 
the other stnng. lt IS also mterestmg to examme now 
the vibrational amplitudes of both strings decay with 
time. Relate your results to the behavior of coupled 
oscillators.10 
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From the editors. Please consider submitting a manu
script to the Computer Simulations column. We also invite 
your comments and suggestions for future columns. Of par
ticular interest are columns such as the present one that 
show students how to apply their knowledge of basic phys
ics to model realistic problems of current interest. We also 
are interested in columns that illustrate how to use simple 
interactive graphics embedded in Fortran 90, C!C+ +, and 
Java simulation programs. For further information on sub
mitting a manuscript, visit http://physics.clarku.edu/cip/ 
cip.html. 
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