
http://www.jstor.org

Digital Synthesis of Plucked-String and Drum Timbres
Author(s): Kevin Karplus and Alex Strong
Source: Computer Music Journal, Vol. 7, No. 2 (Summer, 1983), pp. 43-55
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680062
Accessed: 10/09/2008 17:52

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the

scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that

promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org/stable/3680062?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Kevin Karplus
Computer Science Department
Cornell University
Ithaca, New York 14853

Alex Strong
Computer Science Department
Stanford University
Stanford, California 94305

Introduction

There are many techniques currently used for digi-
tal music synthesis, including frequency modula-
tion (FM) synthesis, waveshaping, additive synthe-
sis, and subtractive synthesis. To achieve rich,
natural sounds, all of them require fast arithmetic
capability, such as is found on expensive computers
or digital synthesizers. For musicians and experi-
menters without access to these machines, musi-
cally interesting digital synthesis has been almost
impossible.

The techniques described in this paper can be im-
plemented quite cheaply on almost any computer.
Real-time synthesis implementations have been
done for Intel 8080A (by Alex Strong), Texas Instru-
ments TMS9900 (by Kevin Karplus), and SC/MP
(by Mike Plass) microprocessors. David Jaffe and
Julius Smith have programmed the Systems Con-
cept Digital Synthesizer at the Center for Computer
Research in Music and Acoustics (CCRMA) to per-
form several variants of the algorithms (Jaffe and
Smith 1983).

Not only are the algorithms simple to imple-
ment in software, but hardware realizations are
easily done. The authors have designed and tested
a custom n-channel metal-oxide semiconductor
(nMOS) chip (the Digitar chip), which computes 16
independent notes, each with a sampling rate of
20 KHz.

Despite the simplicity of the techniques, the
sound is surprisingly rich and natural. When the

This research was supported in part by the Fannie and John
Hertz Foundation.

Computer Music Journal, Vol. 7, No. 2,
Summer 1983, 0148-9267/83/020043-13 $04.00/0,
? 1983 Massachusetts Institute of Technology.

Digital Synthesis of

Plucked-String and

Drum Timbres

plucked-string algorithm was compared with addi-
tive synthesis at Bell Laboratories, it was found that
as many as 30 sine wave oscillators were needed to
produce a similarly realistic timbre (Sleator 1981).
The entire plucked-string algorithm requires only
as much computation as one or two sine wave
oscillators.

The parameters available for control are pitch,
amplitude, and decay time. The pitch is specified
by an integer that is approximately the period of
the sound, in samples (periodicity parameter p).
Amplitude is specified as the initial peak amplitude
A. Decay time is determined by the pitch and by a
decay stretch factor S.

The algorithms in this paper lack the versatility
of FM synthesis, additive synthesis, or subtractive
synthesis. They are, however, cheap to implement,
easy to control, and pleasant to hear. For musicians
interested primarily in performing and composing
music, rather than designing instruments, these al-
gorithms provide a welcome new technique. For
those interested in instrument design, they open a
new field of effective techniques to explore.

Wavetable Synthesis

One standard synthesis technique is the wavetable
synthesis algorithm. It consists of repeating a num-
ber of samples over and over, thus producing a
purely periodic signal. If we let Yt be the value of
the tth sample, the algorithm can be written mathe-
matically as

Yt = Yt-

The parameter p is called the wavetable length or
periodicity parameter. It represents the amount of
memory needed and the period of the tone (in sam-

Karplus and Strong 43

Matt Dailis

Matt Dailis

pies). The initial conditions of the recurrence rela-
tion completely determine the resulting timbre.
Normally, a sine wave, triangle wave, square wave,
or other simple waveform is calculated and loaded
into the wavetable before the note is played. With a
sampling frequency of f,, the frequency of the tone
is fs/p.

The wavetable-synthesis technique is very sim-
ple but rather dull musically, since it produces
purely periodic tones. Traditional musical instru-
ments produce sounds that vary with time. This
variation can be achieved in many ways on comput-
ers. The approach in FM synthesis, additive syn-
thesis, subtractive synthesis, and waveshaping is to
do further processing of the samples after taking
them from the wavetable. All the algorithms de-
scribed in this paper produce the variation in sound
by modifying the wavetable itself.

What sort of modifications to the wavetable are
useful? If no modification is done, the harmonic
content is fixed, and the sound is purely periodic.
To get an almost periodic output, the changes from
period to period must be small. To keep the amount
of computation and the number of memory ac-
cesses small, only one entry in the wavetable is
changed for each sample output. Furthermore,
since we have to look at a value in the wavetable
each sample time, it makes sense to attempt
to change that value. With the most recently read
sample of the wavetable being the only one
changed, the wavetable can be viewed as a delay
line of length p. Figure 1 illustrates the general
form of the algorithms from a delay-line
standpoint.

Plucked-String Algorithm

The simplest modification, invented by Alex Strong
in December 1978, is to average two successive
samples. This can be written mathematically as

1
Yt = (Ytp + Yt p).

It turns out that this averaging process produces a
slow decay of the waveform. The resulting tone of
this algorithm has a pitch that corresponds to a pe-

riod of p + V/ samples (frequency f/l(p + /2)), and
sounds remarkably like the decay of a plucked
string. Since no multiplication is required (only
adding and shifting), the algorithm is fast and easy
to implement on microprocessors.

This recurrence can be viewed as a digital filter
without inputs, as in Fig. 2. The naturalness of the
sound derives largely from differing decay rates for
the different harmonics. No matter what initial
spectrum a tone has, it decays to an almost pure
sine wave, eventually decaying to a constant value
(silence). Later in the paper we will use digital fil-
tering techniques to show that the decay time for
the nth harmonic is roughly proportional to p3/n2.

As with any recurrence relation, initial condi-
tions must be specified. In concrete terms, this
amounts to preloading the wavetable with appropri-
ate values. The initial values can form a sine wave,
triangle wave, or any other desired waveform, just
as for wavetable synthesis. To produce a realistic
string sound, it is desirable to start the note with
a lot of high harmonics. To accomplish this, the
wavetable is filled with random values at the begin-
ning of each new note. Since the samples in the
wavetable are repeated, the randomness does not
produce hiss or noise.

Without the decay algorithm, a random wave-
table has essentially equal harmonics up to the
Nyquist frequency, sounding like a reed organ.
With decay, the higher harmonics decay rapidly,
producing a plucked-string sound very similar to
that of a guitar. The use of random initial load also
has the advantage of giving each repetition of the
same pitch a slightly different harmonic structure.
This variation is small enough that the notes sound
as if they come from the same instrument, but
large enough that the notes don't sound like me-
chanical repetition. Of course, the wavetable can be
copied to get truly identical notes.

One fast way to provide the initial randomness
in the wavetable is to use two-level randomness.
Mathematically, the initial conditions are

1
+A probability -

Yt= for - p < t < 0.
-A probability - 2j

Computer Music Journal 44

Fig. 1. Generic design for
wavetable-modification
techniques.

Fig. 2. Basic plucked-string
(guitar) technique.

Fig. 2

The root-mean-square (rms) amplitude of the out-
put is A, which is half the peak-to-peak amplitude.
Using two-level randomness provides a signal about
5 db louder than using uniform random numbers
between -A and +A. Only a single bit of random-
ness is needed for each sample, so a feedback shift-
register random-bit generator can be used (Knuth
1981, p. 29). A random-bit generator is simpler than
a full random-word generator in either software or
hardware.

There are some limitations on the values of the
periodicity parameter p. If p is small, the variation
between different initial conditions will be rela-
tively large, resulting in poor control of amplitude.
Also, since the pitch of a note is determined by p,
and p must be an integer, not all frequencies are
available. When p is large, the available frequencies
are close together, but when p is small, they are
fairly far apart. These effects, combined with the
short decay times for small p, make p values less
than about 32 undesirable. If the full range of a gui-
tar is desired (up to about 880 Hz), this restriction
requires sampling rates of at least 28.6 KHz. With
some care in the choice of values for p, adequate
performance can be achieved for sampling rates
down to about 20 KHz. To get finer frequency reso-

lution than is available by just changing p, it is
often possible to vary the sampling rate, as well as
the value of p.

After a note has been played, the wavetable is
normally reloaded with random values before the
next note is played. If the wavetable is not changed,
the effect is that of a slur or tie. If p is unchanged,
the note continues; if p is changed, the result is a
slur between the two pitches. Frequent changes to
p can be used to produce glissando and vibrato
effects.

In digital filtering terms, preloading of the wave-
table can be viewed as switching between an input
burst and the feedback (see Fig. 3). By switching
rather than adding, we avoid arithmetic overflow
and eliminate the need for large word sizes. David
James independently published a synthesis tech-
nique that has many similarities to ours (James
1978, p. 38). It also uses a digital filter excited by a
noise burst. However, it provides only decaying am-
plitude, with no change in harmonic structure, and
was intended for use as an excitation waveform for
subtractive synthesis. His technique suffers from
the usual digital filtering problem; it requires high-
speed, high-precision arithmetic (particularly
multiplication).

Karplus and Strong

I II I I

45

Fig. 3. Noise-burst input to
wavetable.

Fig. 4. Basic drum
technique.

Fig. 4

Drum Algorithm

A simple variation of Strong's basic algorithm
yields drum timbres. This was discovered by Kevin
Karplus in December 1979. The simplest descrip-
tion of the drum variant is a probabilistic recur-
rence relation:

+ 2 (Y,_P + Y,__,) probability b
Yt =

- (Yt-p + Y,t-p-) probability 1 - b.

Figure 4 shows the block diagram of the corre-
sponding digital filter.

The parameter b is called the blend factor. With
a blend factor of 1, the algorithm reduces to the
basic plucked-string algorithm, with p controlling
the pitch. With a blend factor of /2, the sound is
drumlike. Intermediate values produce sounds in-
termediate between plucked string and drum, some
of which are quite interesting musically. A blend

factor of 0 negates the entire signal every p + 1/2
samples. This drops the frequency an octave and
leaves only odd harmonics of the new fundamental.
For fairly high pitches, this is a rather odd timbre
that we call a "plucked bottle." For lower pitches,
the sound is harplike.

For b 1/2, the wavetable length does not control
the pitch of the tone, as the sound is aperiodic. In-
stead, it controls the decay time of the noise burst.
The decay time is roughly proportional to p. For
fairly large p (200 or more) and a sampling fre-
quency of 20 KHz, the effect is that of a snare
drum. For small p (around 20), the effect is that of a
brushed tom-tom. Intermediate values provide in-
termediate timbres, allowing smooth transition
from one drum sound to another.

The initial wavetable can be filled with a con-
stant (A), since the drum algorithm will create the
randomness itself. For blends other than b = 1/2,
starting with a constant gives some buildup before
the decay, while starting with randomness gives
maximum amplitude initially. Blends near 1 require

Computer Music Journal 46

nonconstant initial loading of the wavetable, as lit-
tle or no randomness is introduced. If b is restricted
to 0, 1, or /2 (the most interesting values), then only
a single random bit is needed for each sample. If
arbitrary values are allowed for b, a more sophisti-
cated random-number generator is required.

Modifications in the Basic Algorithm

Since the overall decay of a note is very roughly
proportional to p3, notes with a short wavetable
(high pitch) decay very rapidly. There are several
ways to make these notes last longer. The first
method is to use a longer wavetable, but fill it with
several copies of the same waveform. For example,
if the wavetable is doubled in length, the frequency
of the fundamental is dropped about an octave.
However, if the first half of the wavetable is identi-
cal to the second half, only even harmonics will be
present, so the note will sound an octave higher
than the value of p would indicate. The nth
harmonic of the sound we hear is the 2nth har-
monic of the fundamental pitch for the lengthened
wavetable.

Since the decay time for the nth harmonic is
roughly proportional to p3/n2, the decay time for
the nth harmonic of such a doubled wavetable is
proportional to p3/(2n)2 = p3/4n2, instead of
(p/2)3/n2 = p3/8n2, as it would be if we used a
wavetable of length p/2 directly. Note that if p is
odd, it isn't possible to fill the buffer with two iden-
tical copies, so some of the "fundamental" pitch
will remain. However, this small amount will not
be noticeable until the note has decayed a long way.
Odd values of p used this way can improve the tun-
ing of high notes. The wavetable could also be filled
with three, four, or more copies of the same wave-
form to get still higher notes. Making n copies of a
waveform in a table of length p produces a note
lasting about n times as long as using a table of
length p/n. We call this technique the harmonic
trick, since it allows us to get any of the first few
harmonics of our fundamental pitch.

Decay stretching is a more general, more power-

ful, and more computationally expensive method
for lengthening decay times. (It is still very cheap,
since only random numbers are needed, not multi-
plication or additional table lookup.) The recur-
rence relation for stretching the basic plucked-
string algorithm is

Yt-p probability 1
Yt =

t1t4 1 + 2 (Y,t, + Y,t,pl) probability .

The new parameter S is called the stretch factor,
and is always at least 1. The decay time of each
overtone is approximately multiplied by S, when
compared with the decay time for the same over-
tone in the basic algorithm. The pitch of the sound
is also affected by S, as the period is now about
p + 1/2S instead of p + /2. The optimum choice
for S depends on the sampling rate, p, and the effect
desired. By choosing S proportional to p-' or p-2,

the decay times for the nth harmonic can be made
proportional to p2/n2 or p/n2, instead of p3/n2, as
they would be for a constant stretch factor. Note
that for S = 1 the recurrence relation simplifies to
the unstretched algorithm. For S = oo the sound
does not decay; this is simple wavetable synthesis.
Decay stretching can be used to solve the tuning
problem caused by having p + /2 instead of p as the
period of the basic algorithm. By making S propor-
tional to p-~, exact (just intonation) intervals can
easily be tuned. Even simple approximations (such
as doubling S for each higher octave) help with the
tuning of intervals.

If nonrandom wavetable loads are used with large
values of S (long decays), woodwindlike sounds can
be produced. Strong has produced sounds that he
refers to as a "plucked bassoon." More research is
being done to determine appropriate initial wave-
table loads and parameter settings. The "pluck" can
be eliminated in a variety of ways; for example, by
starting two strings exactly out of phase, then hav-
ing them drift apart, or by using an external ampli-
tude envelope. Whether realistic woodwind attacks
are obtainable is currently unknown.

Karplus and Strong 47

The recurrence relation for stretched drums is
/ I \

+ +Ytp probability b 1 -

- Yt-p probability (1 - b(1 -

1 1
+ ((Y,_, +

Y,_ p,) probability b 1

-1 - b) - I
{Y,_p + Y,_-_,) probability (1 - b}-1.

Note that the stretch factor and blend factor are in-
dependent, so the algorithm can be implemented
with two separate tests, and no multiplies are
needed. For drums (b near /2), increasing S in-
creases the "snare" sound, allowing smaller values
of p to be used for the same duration. If b = 1, the
recurrence simplifies to the stretched algorithm for
string sounds. If b = 12 and S = oo, single-bit white
noise is produced.

In many digital synthesizers, fast multiplies are
available, but probabilistic algorithms like decay
stretching are difficult to implement. On these ma-
chines, multiplicative decay stretching can be
done:

Y, = cY,_, + dY,_tpl.

To get an effect similar to the probabilistic decay-
stretching algorithm, set d = 1/2S and c = 1 - d.
If c + d < 1, then there is an overall loss in the
feedback loop, so decay times are reduced, and the
signal eventually decays to zero, rather than just to
a constant. David Jaffe has been experimenting
with this algorithm at CCRMA (Jaffe and Smith
1983).

Shortening the decay times is more difficult than
lengthening them. Use of multiplicative decay
stretching, with c + d < 1, is one way to shorten
decay times. Another possibility is to change the
recurrence to one that smooths out the waveform
faster. For example, we have experimented with the
1-2-1 weighting algorithm:

Y_ ,Y-p + 2Yt-p + Yt-p+
Yt= 4

Unfortunately, the extra computation time this al-
gorithm takes may increase the time per sample
enough to offset the reduced number of samples

needed for the signal to decay. Decay stretching and
the harmonic trick work just as well with this al-
gorithm as with the basic plucked-string algorithm.
It can also be modified to a drum algorithm, but
there seems to be no advantage to this, since decay
time for drums can be adequately controlled by
varying p.

One advantage to the 1-2-1 weighting algorithm
is that the frequency is fs/p, rather than 2f,/(2p+1).
This allows better tuning, since consonant inter-
vals are integer ratios of frequency.

Alan Siegel has suggested the following variation
for reducing decay times:

Yt,p + Yt-i
2

This variant reduces decay times enormously for
the higher harmonics but does not change the
lower harmonics nearly as much. The resulting
sound is still a plucked-string sound, but it is
softer, more like a nylon string than a steel one. All
the modifications to the basic algorithm can also be
applied to this variation.

Generalizations of the Algorithms

Siegel's variant, multiplicative decay stretching,
and the basic algorithm can all be viewed as vari-
ants of the two-point recurrence,

Y, = cY,_ + dY,h,.

For stability, we need to have c + d < 1. So far,
we've only investigated algorithms where g and h
are near p or near 1. Many other possibilities (such
as g = 2h) need exploring.

The 1-2-1 weighting algorithm is one of many
possible three-point recurrences. Jaffe has been ex-
perimenting with others to get independent control
of decay time and pitch. There is no reason (other
than increased computational cost) not to explore
recurrence relations with even more terms.

Probabilistic decay stretching can be generalized
to probabilistic choice from any set of recurrence
relations. In some cases, this can be used to get the
effect of weighted averaging without multiplication

Computer Music Journal

I

- s

48

(as in decay stretching). It can also produce wholly
new sounds (as in the drum algorithms).

Hints for Implementation

On the Intel 8080A, four voices at a sampling rate
of at least 10 KHz have been obtained (also, two
voices at 20 KHz). By using a processor with a faster
clock rate (Z80A or 8085), the sampling rate can be
increased by a factor of about 2 with no change in
the programs. On the TMS9900, two voices at 10
KHz or one voice at 20 KHz have been achieved.
These times are for the basic string algorithms (ex-
cept for the four-voice implementation, which in-
volved a number of tricks). Drums, decay stretch-
ing, and the 1-2-1 weighting algorithm all are
slower. These implementations and the Digitar
chip (16 voices at 20 KHz) are described in a sepa-
rate paper (Karplus and Strong 1983). Jaffe has pro-
grammed the Systems Concept Digital Synthesizer
at CCRMA to implement 29 voices at 17 KHz.

There are many different ways to implement the
recurrence relations for wavetable synthesis and the
decay algorithms. The two most interesting al-
gorithms are the decreasing-counter and circular-
buffer techniques. For the decreasing-counter
method, a wavetable is stored backward in sequen-
tial memory locations, with a pointer to the current
value. As each sample is output, the pointer is dec-
remented to get the next value. When the pointer is
decreased below the bottom of the table, it is reset
to the top.

Normally, the decreasing-counter technique is
good for single-voice implementations only. Multi-
ple voices cause difficulty with "balancing the
loop" (keeping the sampling rate constant), since
the pointer resettings occur at different times. Us-
ing a faster processor doesn't help, unless there is
enough spare time in each sample to do both
pointer resettings. A separate piece of hardware to
resynchronize samples (a first-in-first-out [FIFO]
buffer before the digital-to-analog converter
[DAC]) would eliminate this problem. However, a
two-voice implementation is possible using the
decreasing-counter technique without extra hard-
ware, if one voice is a plucked string and the other

is a drum. The same p value is used for both voices,
sacrificing control of the drum timbre but allowing
both pointers to be reset together.

One trivial variant of the basic algorithm replaces
Yt_,_, with Y_p+ ,, changing the nominal period to
p - 1/2. With a one-voice, decreasing-counter al-
gorithm, this variant permits compensation to pe-
riod p by using the extra time needed for restoring
the pointer. If this extra time can be set to half the
normal sample time, then the average sampling pe-
riod is 1 + 1/2p times as long as the inner-loop
time. This means that the frequency of the tone is

fs_ fs

1 I 1 1'
(p-)(1 + 2p p- 4p

very near the desired frequency fs/p. This trick, like
the 1-2-1 weighting algorithm, allows easier tuning
of consonant intervals.

The circular-buffer technique uses two pointers
into an area of memory at least as large as p. The
pointers are separated by p. The value is read from
the position pointed to by the trailing pointer, out-
put, then copied to the position pointed to by the
leading pointer. Both pointers are then incremented
around the buffer (with the first position coming
immediately after the last one). Clever choice of
the position and size of the buffer often allows the
pointer wraparound to be done with no extra in-
structions. Multiple voices can be done by having
several buffers with pointer pairs. If indexed ad-
dressing is used, the voices can share a common
leading pointer, with different base addresses for the
different voices. Alternatively, for two voices, three
pointers can be used in a single larger buffer, with
the middle pointer used as a trailing pointer for the
first voice, and a leading pointer for the second
voice. For a given amount of memory this allows a
larger value of p for one voice, as long as the other
voice has a small value of p.

Slurring works better with the circular-buffer
technique than with the decreasing-counter tech-
nique. Increases in p merely tap more of the pre-
vious samples, instead of tapping undefined (though
probably usable) values past the end of the table.
With the circular buffer, slurring to a subharmonic

Karplus and Strong

I I

49

(new p a multiple of its orginal value) is essentially
the same as the harmonic trick, since no energy is
introduced at the new fundamental. To slur a sub-
harmonic, the algorithm first slurs to an intermedi-
ate note, waits about a period, and then slurs to the
final pitch.

Average sampling rate can be increased by taking
as much code as possible out of the innermost loop.
For example, the harmonic trick is faster than de-
cay stretching, because it only takes extra time
during wavetable loading (between notes), not dur-
ing notes.

Most software implementations require a timing
counter to determine when to stop a note and read
in new parameters. This counter could be decre-
mented and tested on every sample to get very pre-
cise timing control. An alternative method is to
subtract the buffer size every time the pointer
wraps around. In the decreasing-counter technique,
this is particularly attractive because there is plenty
of spare time during the wraparound.

Using small word sizes (like 8 bits) makes round-
off error a serious problem. In the algorithms de-
scribed in this paper, round-off error is not random
but rather a consistent rounding down of the sam-
ples. This effect significantly reduces the decay
time of the fundamental frequency (compared to
the theoretical decay time or to the decay time
when the algorithm is computed with much larger
word sizes). The effect can almost be eliminated by
randomly adding 0 or 1 to Y,_, + Yt-p-, before divid-

ing by 2. This dither technique lengthens the final
decay of the fundamental roughly back to its the-
oretical decay time, without appreciably lengthen-
ing the initial attack of the tone.

Since the round-off error is consistently in the
same direction, it introduces a dc drift to the decay.
This is not serious, because the algorithm is guar-
anteed not to cause arithmetic overflow (the usual
danger with dc drift). Dithering reduces the drift
considerably by converting it to a random walk, but
does not entirely eliminate it. The dc component
can cause clicks if a voice is silenced by being set to
some constant value (such as 0). In a one-voice im-
plementation, the simplest way to silence a voice
without clicks is to stop sending new values to the
DAC, letting it remain at the last value it received.

Another way to silence a note is to change p to a
very small value (such as 2), producing almost in-
stantaneous decay.

Analysis of the Plucked-String Algorithm

What makes the simple plucked-string algorithm
sound so realistic? How can we predict how long
notes will last? To answer these questions, we have
to look at the decay of the overtones. From listen-
ing to the output of the algorithm, it is clear that
the higher harmonics die very quickly, while the
fundamental and the lower harmonics last a long
time. Low notes last much longer than high notes.

It would be interesting to compare the theoretical
analysis of our synthesis technique with an existing
analysis of a guitar, lute, mandolin, or other string
instrument. Unfortunately, we could not find a pub-
lished analysis and did not have the tools to per-
form our own analysis. Some previous work has
been done using physical models for synthesizing
string sounds (Hiller and Ruiz 1971), but these
models do not help to explain the high quality of
the sound produced with our technique.

Before plunging into the mathematics, it's worth
taking an informal look at what is happening to the
harmonics. Essentially, one pass (p samples) takes
what is in the wavetable and averages it with an-
other copy delayed by one sample time. For sinu-
soids with long periods, one sample time is a very
small phase difference, while for short periods it is
a large difference. Averaging two sinusoids with a
small phase difference decreases the amplitude
slightly, while averaging two with a large phase dif-
ference (up to half a period) causes much more can-
cellation. Since the phase difference results from a
time difference of one sample, it is always less than
half a period for frequencies up to the Nyquist
frequency.

The informal argument can be made more ex-
plicit if we give estimates of the decay rates of the
harmonics (Jaffe and Smith 1983). However, by bor-
rowing some techniques from digital-filter design,
we can compute both the decay rates and the fre-
quencies of the overtones accurately and see how
good the simpler approximations are. If we view the

Computer Music Journal

_ _

50

algorithm as a digital filter with no input, the over-
tones and their decay rates correspond to poles in
the z-transform of the impulse response of the fil-
ter. More information on z-transform techniques
can be found in the literature (Moore 1978; Anto-
niou 1979). The decay time of a partial is inversely
proportional to the log of the magnitude of the cor-
responding pole, and the frequency is proportional
to the argument of the pole. Writing the location of
pole in polar form as aei' allows us to write the fre-
quency and decay-time constant of the correspond-
ing overtone:

f= fs&
27r

-1
D=

fsln a

The decay time is the time it takes for the partial
to decay to 1/e of its initial amplitude. In audio
work, the time it takes to decay 60 db is often used
instead. To get the 60-db decay time, we multiply
D by In 1000 = 6.908.

We can obtain the z-transform of the impulse re-
sponse from the recurrence relations by using the
standard techniques for digital filter analysis:

1
(z-'+ 1)z-

_ 1+z
1 - z- z-P

The poles of the z-transform are the roots of
2zp+l - z - 1 = 0. There is only one zero at
z = -1 (corresponding to the Nyquist frequency
1/2f). The roots are easy to approximate if we rear-
range the equation to be 2zp+l/2 = Z1/2 + z-1/2. Re-
placing z by aeli gives us

2aP+ 1/2eio(p+ 1/2) = a 1/2ei(w/2) + a-1/2e-i()/2)

= V a + a-' + 2 cos to *ei?

for some angle 0. Looking at just the imaginary
parts of the right-hand sides, we get

V/ a + a-l + 2 cos cto /sin = 2 - a- sin

Approximations are easily found if we assume

that a is only slightly less than 1. This assumption
is easily verified numerically. If a = 1 - s, then

a + a-' = 2 + 82 + S3 + . . . x 2

a1/2 - a-1/2 = - E2/8 - .. O.

This gives us that sin 0 O0, so ei'P+ 1/2) = ei' 1,
which we can solve for co to get a first approxima-
tion of the frequency of the nth partial:

0 + 27rn 27rn
1 1

P+- P+ 2 2 2

Since V2 + 2 cos w = 2 cos w/2, the magnitude
of the pole is 2aP+ /2 = 2 cos o/2. Solving for a, we
get an approximation for the decay time of the nth
harmonic:

a = cos l/(+ 1/2)
CO/ 227rn l/(p+1/2)

= cos
2p + 1

1
-1 P+2

D fs In a 2Trn
-ff In cos 2p +

These estimates are the same as the ones ob-
tained by less formal analysis. For large p and small
n, they are quite accurate (for p = 240 and n = 1
the magnitude and frequency estimates are both
correct to seven significant figures).

More accuracy can be obtained by using these es-
timates as starting values for iterative improve-
ment. The simplest technique is to use a few
iterations of Newton's method to improve the ap-
proximations for the poles:

2pzP+i + 1

2(p + 1)zP- 1

For a more intuitive grasp of the relationships be-
tween p, n, and decay time, it is worthwhile to ex-
pand the decay-time estimate in powers of n:

1 (2p + 1)3 2p + 1
D =

f 47r2n2 - 6

47r2n2 _
15(2p + 1) -.

Roughly speaking, decay time increases as p3, and

Karplus and Strong 51

decreases as n-2. Appendix 1 provides a tabulation
of decay-time constant, estimated-time constant,
and the first term of the power series for various
values of p and n. For most purposes, the first term
of the power series is an accurate enough estimate
of the decay time.

The frequency estimates for the overtones are
purely harmonic. It is interesting to examine how
much inharmonicity is actually present. This re-
quires estimating 0 somewhat more accurately. If
we replace a + a-' by 2 as before, replace a1l2 by
(cos 0/2)l'/2p+l , and rearrange the equation involving
sin 0, we get

. 2 1/(2p + 1)
0 sin- -2 tan - (cos - -

(

O

f) -1/{2P+1?))

Expanding by powers of w gives

j3 O
5

0 (0) - Ct) +
16(2p + 1) 128(2p + 1) +

Plugging in our previous approximation for w, com-
puting 6, then recomputing o gives us

47rn 8 T3n3
2p + 1 (2p + 1)5

Appendix 2 tabulates the frequency of the pure har-
monic, the improved estimate of w, the frequency
obtained by using Newton's method to refine the
estimate of the pole, and the inharmonicity of the
overtone. It can be seen that (except for small val-
ues of p) the overtones are almost pure harmonics.

The frequencies and decay times for the 1-2-1
weighting algorithm can be analyzed in a similar
fashion. The partials are pure harmonics, and the
decay times are about half the decay times for cor-
responding partials obtained using the basic
algorithm.

Analysis of the Drum Algorithm

Since the drum algorithm produces aperiodic sig-
nals, we need to use different tools to analyze it.
Instead of amplitudes of overtones, let's look at the

rms amplitude. Root-mean-square amplitude is the
square root of the expected value of the square of
the amplitude = VE(Y2). Squaring the recurrence
relation for the drum algorithm yields

E(Y2) = 4 E(Y,2) + 1
E(Y2 P-) + 2 E(Y,_pY _p_).

Since Yt,_ and Y,_p_, have independent signs,
E(Yt,_Y,t_ ,) = 0. This reduces the recurrence
relation to

1
E(Y2)= (E(Y,) + E(Y2_,_,).

Note that for -p < t < 0, E(Y2) = A2. If we make
the simplifying assumption that E(Y2 ,) is approx-
imately E(Y2 P_,), we get

1
E(Yt) 2 E(Y2,) = 2-[t'/PA2

We can improve this estimate somewhat by
changing our assumption that E(Y2 ,) is nearly the
same as E(Y2 p-). If we instead assume that E(Y2)
decays exponentially, we can express E(Y2) in the
form 2atA2. To compute a, we plug into the pre-
vious recurrence relation, getting

2atA2 = I
(2a(t-pA2 + 2a(t-p-1)A2) 4

This can be simplified to

1
2"a = I

(1 + 2-).

Since 1 + 2- a 2(2)-'2, we can conclude that

E(Y2) 2 2-2t/(2p+lA2

and

rms Yt z 2- t'/2p+ A.

This is not a complete analysis of the drum al-
gorithm, since the absolute values of successive
values are correlated, as are the absolute values of
samples p apart. Experiments still need to be done
to determine whether there is a perceptual dif-
ference between the drum algorithm and a Gaus-
sian noise source with an exponentially decaying
envelope.

Computer Music Journal

I

52

Conclusions and Future Research

We have developed simple but powerful algorithms
that can be implemented on a variety of different
processors and synthesizers. They allow program-
mers and musicians to experiment with computer
music using inexpensive equipment. The algo-
rithms do not have the versatility of FM synthesis
or additive synthesis, but provide surprisingly rich
timbres. Readers interested in commercial appli-
cation of these algorithms should contact the Office
of Technology Licensing at Stanford University
about licensing agreements.

In addition to the problems mentioned in the
main body of the paper, there are still a lot of ques-
tions that need answering. For example, what
sounds can be achieved by using the guitar decay
algorithm as a digital filter to produce a tuned re-
verberator? Or by cross-coupling two strings at
slightly different pitches? What about more compli-
cated modifiers in the feedback loop (two delay-
and-mix units instead of one, allpass filters, and so
on)? What about locking together two voices (same
initial load) with opposite amplitudes so that they
cancel each other, then letting them drift apart by
using independent probabilistic decay stretching?
Some of these problems are examined by Jaffe and
Smith (1983); others are being investigated with the
Digitar chip.

Those interested in mathematical analyses could
probably improve the current analyses a bit, and
other variants have yet to be analyzed. A good ap-
proximation for the poles of the general two-point
recurrence would be particularly welcome. It would
also be interesting to convert the recurrence rela-
tions to differential equations, and to assign a phys-
ical interpretation. Techniques for taking the z-
transform of a probabilistic algorithm are needed to
perform a proper analysis of decay stretching.

References

Antoniou, A. 1979. Digital Filters: Analysis and Design.
New York: McGraw-Hill.

Hiller, L., and P. Ruiz. 1971. "Synthesizing Musical

Sounds by Solving the Wave Equation for Vibrating Ob-
jects." Journal of the Audio Engineering Society Part 1:
19(6):462-470; Part 2: 19(7):542-551.

Jaffe, D., and J. Smith. 1983. "Extensions of the Karplus-
Strong Plucked-String Algorithm." Computer Music
Journal 7(2) :56- 69.

James, D. 1978. "Real Time Synthesis Using High Speed
Computer Networks." Ph.D. thesis, Massachusetts In-
stitute of Technology.

Karplus, K., and A. Strong. 1983. "Implementations of the
Digitar Algorithms." Unpublished manuscript.

Knuth, D. 1981. The Art of Computer Programming: Vol-
ume 2, Seminumerical Algorithms. 2nd ed. Reading,
Massachusetts: Addison-Wesley.

Moore, F. R. 1978. "An Introduction to the Mathematics
of Digital Signal Processing, Part II: Sampling, Trans-
forms, and Digital Filtering." Computer Music Journal
2(2): 38-60.

Sleator, D. 1981. Private communication.

Appendix 1: Decay-Time Constants

The decay time is the time (in seconds, sampling
rate = 20 KHz) it takes for harmonic n to decay to
1/e of its initial amplitude, using the plucked-string
algorithm (with periodicity parameter p). The first
column in the table is a crude estimate of decay
time, calculated from the first term of the power-
series expansion (see the text):

(2p + 1)3
47r2n2f,

The second column is the estimate from which the
power series was derived:

1
P4+

2n
27rn

-f ln cos 2+ 1

The third column is computed from the poles of
the z-transform for the plucked-string algorithm
(the roots of 2zp+l - z - 1). To compute the table,
the poles were estimated by

COS 2 2/(2p + 1 Cos
2I + 1

e

Karplus and Strong

I

53

The estimates were then refined by iterating New-
ton's method until successive approximations dif-
fered by less than 10-6. The log magnitude of the

pole was divided by fs to get the table entry.

Crude Better Refined
p n estimate estimate estimate

2 1 .0002 .0001 .0001
3 1 .0004 .0004 .0004
4 1 .0009 .0008 .0009
4 2 .0002 .0001 .0002

30 1 .2875 .2870 .2869
30 2 .0719 .0714 .0714
30 3 .0319 .0314 .0314
60 1 2.2437 2.2427 2.2416
60 2 .5609 .5599 .5599
60 3 .2493 .2483 .2483
60 4 .1402 .1392 .1392

120 1 17.7281 17.7261 17.8847
120 2 4.4320 4.4300 4.4326
120 3 1.9698 1.9678 1.9682
240 1 140.9436 140.9396 146.4811
240 2 35.2359 35.2319 34.8357
240 3 15.6604 15.6564 15.6683
240 4 8.8090 8.8050 8.7606
240 8 2.2022 2.1982 2.2016
240 15 .6264 .6224 .6225
240 30 .1566 .1525 .1525
240 60 .0392 .0349 .0349
240 120 .0098 .0021 .0027
480 1 1124.0365 1124.0285 1187.5162
480 2 281.0091 281.0011 298.7312
480 3 124.8929 124.8849 134.1789
480 4 70.2523 70.2443 67.3967
480 8 17.5631 17.5551 17.5233

Appendix 2: Frequencies of Overtones

The table in this appendix gives frequencies (in
hertz, with a sampling rate of 20 KHz) for various
overtones of the plucked-string algorithm. The first
column is the simple harmonics of l/(p + 1/2); the
second is the improved estimate, including the n3
correction term; the third is from Newton's
method, using the second estimate as a starting
point; the fourth is the deviation of the actual fre-
quency from the pure harmonic (in cents). (Note: n
is the number of the harmonic, and p is the peri-
odicity parameter.)

Computer Music Journal 54

p n Harmonic Corrected Actual Inharmonicity

2 1 8000.000 7747.338 7500.000 -111.7313
3 1 5714.286 5667.307 5642.389 -21.9205
4 1 4444.444 4431.073 4427.170 -6.7421
4 2 8888.889 8781.918 8507.279 -75.9665

30 1 655.738 655.737 655.737 -.0025
30 2 1311.475 1311.468 1311.468 -.0101
30 3 1967.213 1967.188 1967.187 -.0233
60 1 330.579 330.578 330.578 -.0002
60 2 661.157 661.157 661.157 -.0006
60 3 991.736 991.735 991.735 -.0015
60 4 1322.314 1322.312 1322.312 -.0026

120 1 165.975 165.975 165.975 .0000
120 2 331.950 331.950 331.950 .0000
120 3 497.925 497.925 497.925 -.0001
240 1 83.160 83.160 83.160 .0000
240 2 166.320 166.320 166.320 .0000
240 3 249.480 249.480 249.480 .0000
240 4 332.640 332.640 332.640 .0000
240 8 665.281 665.281 665.281 .0000
240 15 1247.401 1247.401 1247.401 -.0001
240 30 2494.802 2494.802 2494.802 -.0006
240 60 4989.605 4989.598 4989.596 -.0033
240 120 9979.210 9979.157 9965.363 -2.4038
480 1 41.623 41.623 41.623 .0000
480 2 83.247 83.247 83.247 .0000
480 3 124.870 124.870 124.870 .0000
480 4 166.493 166.493 166.493 .0000
480 8 332.986 332.986 332.986 .0000

Karplus and Strong 55

	Article Contents
	p. 43
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55

	Issue Table of Contents
	Computer Music Journal, Vol. 7, No. 2, Summer, 1983
	Front Matter [pp. 1 - 2]
	Editor's Notes [p. 3]
	Errata: Announcements [p. 3]
	Announcements [pp. 4 - 5]
	Peter Tod Lewis: 1932-1982 [p. 5]
	Letters
	Call for Information on Thaddeus Cahill [p. 5]
	McLeyvier Corrections and Update [pp. 5 - 6]
	On Barry Schrader's Book [pp. 6 - 7]

	Report on the 1982 International Computer Music Conference [pp. 8 - 35]
	Report on the International Conference on Musical Grammars and Computer Analysis [pp. 36 - 42]
	Digital Synthesis of Plucked-String and Drum Timbres [pp. 43 - 55]
	Extensions of the Karplus-Strong Plucked-String Algorithm [pp. 56 - 69]
	A Report on SPIRE: An Interactive Audio Processing Environment [pp. 70 - 74]
	Reviews
	Publications
	untitled [pp. 75 - 76]
	untitled [pp. 76 - 77]

	Records
	untitled [pp. 77 - 78]
	untitled [pp. 78 - 79]
	untitled [pp. 79 - 80]
	untitled [p. 80]
	untitled [p. 80]

	Products of Interest [pp. 81 - 85]
	Back Matter

