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Introduction 

There are many techniques currently used for digi- 
tal music synthesis, including frequency modula- 
tion (FM) synthesis, waveshaping, additive synthe- 
sis, and subtractive synthesis. To achieve rich, 
natural sounds, all of them require fast arithmetic 
capability, such as is found on expensive computers 
or digital synthesizers. For musicians and experi- 
menters without access to these machines, musi- 
cally interesting digital synthesis has been almost 
impossible. 

The techniques described in this paper can be im- 
plemented quite cheaply on almost any computer. 
Real-time synthesis implementations have been 
done for Intel 8080A (by Alex Strong), Texas Instru- 
ments TMS9900 (by Kevin Karplus), and SC/MP 
(by Mike Plass) microprocessors. David Jaffe and 
Julius Smith have programmed the Systems Con- 
cept Digital Synthesizer at the Center for Computer 
Research in Music and Acoustics (CCRMA) to per- 
form several variants of the algorithms (Jaffe and 
Smith 1983). 

Not only are the algorithms simple to imple- 
ment in software, but hardware realizations are 
easily done. The authors have designed and tested 
a custom n-channel metal-oxide semiconductor 
(nMOS) chip (the Digitar chip), which computes 16 
independent notes, each with a sampling rate of 
20 KHz. 

Despite the simplicity of the techniques, the 
sound is surprisingly rich and natural. When the 
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plucked-string algorithm was compared with addi- 
tive synthesis at Bell Laboratories, it was found that 
as many as 30 sine wave oscillators were needed to 
produce a similarly realistic timbre (Sleator 1981). 
The entire plucked-string algorithm requires only 
as much computation as one or two sine wave 
oscillators. 

The parameters available for control are pitch, 
amplitude, and decay time. The pitch is specified 
by an integer that is approximately the period of 
the sound, in samples (periodicity parameter p). 
Amplitude is specified as the initial peak amplitude 
A. Decay time is determined by the pitch and by a 
decay stretch factor S. 

The algorithms in this paper lack the versatility 
of FM synthesis, additive synthesis, or subtractive 
synthesis. They are, however, cheap to implement, 
easy to control, and pleasant to hear. For musicians 
interested primarily in performing and composing 
music, rather than designing instruments, these al- 
gorithms provide a welcome new technique. For 
those interested in instrument design, they open a 
new field of effective techniques to explore. 

Wavetable Synthesis 

One standard synthesis technique is the wavetable 
synthesis algorithm. It consists of repeating a num- 
ber of samples over and over, thus producing a 
purely periodic signal. If we let Yt be the value of 
the tth sample, the algorithm can be written mathe- 
matically as 

Yt = Yt- 

The parameter p is called the wavetable length or 
periodicity parameter. It represents the amount of 
memory needed and the period of the tone (in sam- 
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pies). The initial conditions of the recurrence rela- 
tion completely determine the resulting timbre. 
Normally, a sine wave, triangle wave, square wave, 
or other simple waveform is calculated and loaded 
into the wavetable before the note is played. With a 
sampling frequency of f,, the frequency of the tone 
is fs/p. 

The wavetable-synthesis technique is very sim- 
ple but rather dull musically, since it produces 
purely periodic tones. Traditional musical instru- 
ments produce sounds that vary with time. This 
variation can be achieved in many ways on comput- 
ers. The approach in FM synthesis, additive syn- 
thesis, subtractive synthesis, and waveshaping is to 
do further processing of the samples after taking 
them from the wavetable. All the algorithms de- 
scribed in this paper produce the variation in sound 
by modifying the wavetable itself. 

What sort of modifications to the wavetable are 
useful? If no modification is done, the harmonic 
content is fixed, and the sound is purely periodic. 
To get an almost periodic output, the changes from 
period to period must be small. To keep the amount 
of computation and the number of memory ac- 
cesses small, only one entry in the wavetable is 
changed for each sample output. Furthermore, 
since we have to look at a value in the wavetable 
each sample time, it makes sense to attempt 
to change that value. With the most recently read 
sample of the wavetable being the only one 
changed, the wavetable can be viewed as a delay 
line of length p. Figure 1 illustrates the general 
form of the algorithms from a delay-line 
standpoint. 

Plucked-String Algorithm 

The simplest modification, invented by Alex Strong 
in December 1978, is to average two successive 
samples. This can be written mathematically as 

1 
Yt = (Ytp + Yt p). 

It turns out that this averaging process produces a 
slow decay of the waveform. The resulting tone of 
this algorithm has a pitch that corresponds to a pe- 

riod of p + V/ samples (frequency f/l(p + /2)), and 
sounds remarkably like the decay of a plucked 
string. Since no multiplication is required (only 
adding and shifting), the algorithm is fast and easy 
to implement on microprocessors. 

This recurrence can be viewed as a digital filter 
without inputs, as in Fig. 2. The naturalness of the 
sound derives largely from differing decay rates for 
the different harmonics. No matter what initial 
spectrum a tone has, it decays to an almost pure 
sine wave, eventually decaying to a constant value 
(silence). Later in the paper we will use digital fil- 
tering techniques to show that the decay time for 
the nth harmonic is roughly proportional to p3/n2. 

As with any recurrence relation, initial condi- 
tions must be specified. In concrete terms, this 
amounts to preloading the wavetable with appropri- 
ate values. The initial values can form a sine wave, 
triangle wave, or any other desired waveform, just 
as for wavetable synthesis. To produce a realistic 
string sound, it is desirable to start the note with 
a lot of high harmonics. To accomplish this, the 
wavetable is filled with random values at the begin- 
ning of each new note. Since the samples in the 
wavetable are repeated, the randomness does not 
produce hiss or noise. 

Without the decay algorithm, a random wave- 
table has essentially equal harmonics up to the 
Nyquist frequency, sounding like a reed organ. 
With decay, the higher harmonics decay rapidly, 
producing a plucked-string sound very similar to 
that of a guitar. The use of random initial load also 
has the advantage of giving each repetition of the 
same pitch a slightly different harmonic structure. 
This variation is small enough that the notes sound 
as if they come from the same instrument, but 
large enough that the notes don't sound like me- 
chanical repetition. Of course, the wavetable can be 
copied to get truly identical notes. 

One fast way to provide the initial randomness 
in the wavetable is to use two-level randomness. 
Mathematically, the initial conditions are 

1 
+A probability - 

Yt= for - p < t < 0. 
-A probability - 2j 
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Fig. 1. Generic design for 
wavetable-modification 
techniques. 

Fig. 2. Basic plucked-string 
(guitar) technique. 

Fig. 2 

The root-mean-square (rms) amplitude of the out- 
put is A, which is half the peak-to-peak amplitude. 
Using two-level randomness provides a signal about 
5 db louder than using uniform random numbers 
between -A and +A. Only a single bit of random- 
ness is needed for each sample, so a feedback shift- 
register random-bit generator can be used (Knuth 
1981, p. 29). A random-bit generator is simpler than 
a full random-word generator in either software or 
hardware. 

There are some limitations on the values of the 
periodicity parameter p. If p is small, the variation 
between different initial conditions will be rela- 
tively large, resulting in poor control of amplitude. 
Also, since the pitch of a note is determined by p, 
and p must be an integer, not all frequencies are 
available. When p is large, the available frequencies 
are close together, but when p is small, they are 
fairly far apart. These effects, combined with the 
short decay times for small p, make p values less 
than about 32 undesirable. If the full range of a gui- 
tar is desired (up to about 880 Hz), this restriction 
requires sampling rates of at least 28.6 KHz. With 
some care in the choice of values for p, adequate 
performance can be achieved for sampling rates 
down to about 20 KHz. To get finer frequency reso- 

lution than is available by just changing p, it is 
often possible to vary the sampling rate, as well as 
the value of p. 

After a note has been played, the wavetable is 
normally reloaded with random values before the 
next note is played. If the wavetable is not changed, 
the effect is that of a slur or tie. If p is unchanged, 
the note continues; if p is changed, the result is a 
slur between the two pitches. Frequent changes to 
p can be used to produce glissando and vibrato 
effects. 

In digital filtering terms, preloading of the wave- 
table can be viewed as switching between an input 
burst and the feedback (see Fig. 3). By switching 
rather than adding, we avoid arithmetic overflow 
and eliminate the need for large word sizes. David 
James independently published a synthesis tech- 
nique that has many similarities to ours (James 
1978, p. 38). It also uses a digital filter excited by a 
noise burst. However, it provides only decaying am- 
plitude, with no change in harmonic structure, and 
was intended for use as an excitation waveform for 
subtractive synthesis. His technique suffers from 
the usual digital filtering problem; it requires high- 
speed, high-precision arithmetic (particularly 
multiplication). 
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Fig. 3. Noise-burst input to 
wavetable. 

Fig. 4. Basic drum 
technique. 

Fig. 4 

Drum Algorithm 

A simple variation of Strong's basic algorithm 
yields drum timbres. This was discovered by Kevin 
Karplus in December 1979. The simplest descrip- 
tion of the drum variant is a probabilistic recur- 
rence relation: 

+ 2 (Y,_P + Y,__,) probability b 
Yt = 

- (Yt-p + Y,t-p-) probability 1 - b. 

Figure 4 shows the block diagram of the corre- 
sponding digital filter. 

The parameter b is called the blend factor. With 
a blend factor of 1, the algorithm reduces to the 
basic plucked-string algorithm, with p controlling 
the pitch. With a blend factor of /2, the sound is 
drumlike. Intermediate values produce sounds in- 
termediate between plucked string and drum, some 
of which are quite interesting musically. A blend 

factor of 0 negates the entire signal every p + 1/2 
samples. This drops the frequency an octave and 
leaves only odd harmonics of the new fundamental. 
For fairly high pitches, this is a rather odd timbre 
that we call a "plucked bottle." For lower pitches, 
the sound is harplike. 

For b 1/2, the wavetable length does not control 
the pitch of the tone, as the sound is aperiodic. In- 
stead, it controls the decay time of the noise burst. 
The decay time is roughly proportional to p. For 
fairly large p (200 or more) and a sampling fre- 
quency of 20 KHz, the effect is that of a snare 
drum. For small p (around 20), the effect is that of a 
brushed tom-tom. Intermediate values provide in- 
termediate timbres, allowing smooth transition 
from one drum sound to another. 

The initial wavetable can be filled with a con- 
stant (A), since the drum algorithm will create the 
randomness itself. For blends other than b = 1/2, 
starting with a constant gives some buildup before 
the decay, while starting with randomness gives 
maximum amplitude initially. Blends near 1 require 
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nonconstant initial loading of the wavetable, as lit- 
tle or no randomness is introduced. If b is restricted 
to 0, 1, or /2 (the most interesting values), then only 
a single random bit is needed for each sample. If 
arbitrary values are allowed for b, a more sophisti- 
cated random-number generator is required. 

Modifications in the Basic Algorithm 

Since the overall decay of a note is very roughly 
proportional to p3, notes with a short wavetable 
(high pitch) decay very rapidly. There are several 
ways to make these notes last longer. The first 
method is to use a longer wavetable, but fill it with 
several copies of the same waveform. For example, 
if the wavetable is doubled in length, the frequency 
of the fundamental is dropped about an octave. 
However, if the first half of the wavetable is identi- 
cal to the second half, only even harmonics will be 
present, so the note will sound an octave higher 
than the value of p would indicate. The nth 
harmonic of the sound we hear is the 2nth har- 
monic of the fundamental pitch for the lengthened 
wavetable. 

Since the decay time for the nth harmonic is 
roughly proportional to p3/n2, the decay time for 
the nth harmonic of such a doubled wavetable is 
proportional to p3/(2n)2 = p3/4n2, instead of 
(p/2)3/n2 = p3/8n2, as it would be if we used a 
wavetable of length p/2 directly. Note that if p is 
odd, it isn't possible to fill the buffer with two iden- 
tical copies, so some of the "fundamental" pitch 
will remain. However, this small amount will not 
be noticeable until the note has decayed a long way. 
Odd values of p used this way can improve the tun- 
ing of high notes. The wavetable could also be filled 
with three, four, or more copies of the same wave- 
form to get still higher notes. Making n copies of a 
waveform in a table of length p produces a note 
lasting about n times as long as using a table of 
length p/n. We call this technique the harmonic 
trick, since it allows us to get any of the first few 
harmonics of our fundamental pitch. 

Decay stretching is a more general, more power- 

ful, and more computationally expensive method 
for lengthening decay times. (It is still very cheap, 
since only random numbers are needed, not multi- 
plication or additional table lookup.) The recur- 
rence relation for stretching the basic plucked- 
string algorithm is 

Yt-p probability 1 
Yt = 

t1t4 1 + 2 (Y,t, + Y,t,pl) probability . 

The new parameter S is called the stretch factor, 
and is always at least 1. The decay time of each 
overtone is approximately multiplied by S, when 
compared with the decay time for the same over- 
tone in the basic algorithm. The pitch of the sound 
is also affected by S, as the period is now about 
p + 1/2S instead of p + /2. The optimum choice 
for S depends on the sampling rate, p, and the effect 
desired. By choosing S proportional to p-' or p-2, 

the decay times for the nth harmonic can be made 
proportional to p2/n2 or p/n2, instead of p3/n2, as 
they would be for a constant stretch factor. Note 
that for S = 1 the recurrence relation simplifies to 
the unstretched algorithm. For S = oo the sound 
does not decay; this is simple wavetable synthesis. 
Decay stretching can be used to solve the tuning 
problem caused by having p + /2 instead of p as the 
period of the basic algorithm. By making S propor- 
tional to p-~, exact (just intonation) intervals can 
easily be tuned. Even simple approximations (such 
as doubling S for each higher octave) help with the 
tuning of intervals. 

If nonrandom wavetable loads are used with large 
values of S (long decays), woodwindlike sounds can 
be produced. Strong has produced sounds that he 
refers to as a "plucked bassoon." More research is 
being done to determine appropriate initial wave- 
table loads and parameter settings. The "pluck" can 
be eliminated in a variety of ways; for example, by 
starting two strings exactly out of phase, then hav- 
ing them drift apart, or by using an external ampli- 
tude envelope. Whether realistic woodwind attacks 
are obtainable is currently unknown. 

Karplus and Strong 47 



The recurrence relation for stretched drums is 
/ I \ 

+ +Ytp probability b 1 - 

- Yt-p probability (1 - b( 1 - 

1 1 
+ ( (Y,_, + 

Y,_ p,) probability b 1 

-1 - b) - I 
{Y,_p + Y,_-_,) probability (1 - b}-1. 

Note that the stretch factor and blend factor are in- 
dependent, so the algorithm can be implemented 
with two separate tests, and no multiplies are 
needed. For drums (b near /2), increasing S in- 
creases the "snare" sound, allowing smaller values 
of p to be used for the same duration. If b = 1, the 
recurrence simplifies to the stretched algorithm for 
string sounds. If b = 12 and S = oo, single-bit white 
noise is produced. 

In many digital synthesizers, fast multiplies are 
available, but probabilistic algorithms like decay 
stretching are difficult to implement. On these ma- 
chines, multiplicative decay stretching can be 
done: 

Y, = cY,_, + dY,_tpl. 

To get an effect similar to the probabilistic decay- 
stretching algorithm, set d = 1/2S and c = 1 - d. 
If c + d < 1, then there is an overall loss in the 
feedback loop, so decay times are reduced, and the 
signal eventually decays to zero, rather than just to 
a constant. David Jaffe has been experimenting 
with this algorithm at CCRMA (Jaffe and Smith 
1983). 

Shortening the decay times is more difficult than 
lengthening them. Use of multiplicative decay 
stretching, with c + d < 1, is one way to shorten 
decay times. Another possibility is to change the 
recurrence to one that smooths out the waveform 
faster. For example, we have experimented with the 
1-2-1 weighting algorithm: 

Y_ ,Y-p + 2Yt-p + Yt-p+ 
Yt= 4 

Unfortunately, the extra computation time this al- 
gorithm takes may increase the time per sample 
enough to offset the reduced number of samples 

needed for the signal to decay. Decay stretching and 
the harmonic trick work just as well with this al- 
gorithm as with the basic plucked-string algorithm. 
It can also be modified to a drum algorithm, but 
there seems to be no advantage to this, since decay 
time for drums can be adequately controlled by 
varying p. 

One advantage to the 1-2-1 weighting algorithm 
is that the frequency is fs/p, rather than 2f,/(2p+1). 
This allows better tuning, since consonant inter- 
vals are integer ratios of frequency. 

Alan Siegel has suggested the following variation 
for reducing decay times: 

Yt,p + Yt-i 
2 

This variant reduces decay times enormously for 
the higher harmonics but does not change the 
lower harmonics nearly as much. The resulting 
sound is still a plucked-string sound, but it is 
softer, more like a nylon string than a steel one. All 
the modifications to the basic algorithm can also be 
applied to this variation. 

Generalizations of the Algorithms 

Siegel's variant, multiplicative decay stretching, 
and the basic algorithm can all be viewed as vari- 
ants of the two-point recurrence, 

Y, = cY,_ + dY,h,. 

For stability, we need to have c + d < 1. So far, 
we've only investigated algorithms where g and h 
are near p or near 1. Many other possibilities (such 
as g = 2h) need exploring. 

The 1-2-1 weighting algorithm is one of many 
possible three-point recurrences. Jaffe has been ex- 
perimenting with others to get independent control 
of decay time and pitch. There is no reason (other 
than increased computational cost) not to explore 
recurrence relations with even more terms. 

Probabilistic decay stretching can be generalized 
to probabilistic choice from any set of recurrence 
relations. In some cases, this can be used to get the 
effect of weighted averaging without multiplication 
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(as in decay stretching). It can also produce wholly 
new sounds (as in the drum algorithms). 

Hints for Implementation 

On the Intel 8080A, four voices at a sampling rate 
of at least 10 KHz have been obtained (also, two 
voices at 20 KHz). By using a processor with a faster 
clock rate (Z80A or 8085), the sampling rate can be 
increased by a factor of about 2 with no change in 
the programs. On the TMS9900, two voices at 10 
KHz or one voice at 20 KHz have been achieved. 
These times are for the basic string algorithms (ex- 
cept for the four-voice implementation, which in- 
volved a number of tricks). Drums, decay stretch- 
ing, and the 1-2-1 weighting algorithm all are 
slower. These implementations and the Digitar 
chip (16 voices at 20 KHz) are described in a sepa- 
rate paper (Karplus and Strong 1983). Jaffe has pro- 
grammed the Systems Concept Digital Synthesizer 
at CCRMA to implement 29 voices at 17 KHz. 

There are many different ways to implement the 
recurrence relations for wavetable synthesis and the 
decay algorithms. The two most interesting al- 
gorithms are the decreasing-counter and circular- 
buffer techniques. For the decreasing-counter 
method, a wavetable is stored backward in sequen- 
tial memory locations, with a pointer to the current 
value. As each sample is output, the pointer is dec- 
remented to get the next value. When the pointer is 
decreased below the bottom of the table, it is reset 
to the top. 

Normally, the decreasing-counter technique is 
good for single-voice implementations only. Multi- 
ple voices cause difficulty with "balancing the 
loop" (keeping the sampling rate constant), since 
the pointer resettings occur at different times. Us- 
ing a faster processor doesn't help, unless there is 
enough spare time in each sample to do both 
pointer resettings. A separate piece of hardware to 
resynchronize samples (a first-in-first-out [FIFO] 
buffer before the digital-to-analog converter 
[DAC]) would eliminate this problem. However, a 
two-voice implementation is possible using the 
decreasing-counter technique without extra hard- 
ware, if one voice is a plucked string and the other 

is a drum. The same p value is used for both voices, 
sacrificing control of the drum timbre but allowing 
both pointers to be reset together. 

One trivial variant of the basic algorithm replaces 
Yt_,_, with Y_p+ ,, changing the nominal period to 
p - 1/2. With a one-voice, decreasing-counter al- 
gorithm, this variant permits compensation to pe- 
riod p by using the extra time needed for restoring 
the pointer. If this extra time can be set to half the 
normal sample time, then the average sampling pe- 
riod is 1 + 1/2p times as long as the inner-loop 
time. This means that the frequency of the tone is 

fs_ fs 

1 I 1 1' 
(p- )(1 + 2p p- 4p 

very near the desired frequency fs/p. This trick, like 
the 1-2-1 weighting algorithm, allows easier tuning 
of consonant intervals. 

The circular-buffer technique uses two pointers 
into an area of memory at least as large as p. The 
pointers are separated by p. The value is read from 
the position pointed to by the trailing pointer, out- 
put, then copied to the position pointed to by the 
leading pointer. Both pointers are then incremented 
around the buffer (with the first position coming 
immediately after the last one). Clever choice of 
the position and size of the buffer often allows the 
pointer wraparound to be done with no extra in- 
structions. Multiple voices can be done by having 
several buffers with pointer pairs. If indexed ad- 
dressing is used, the voices can share a common 
leading pointer, with different base addresses for the 
different voices. Alternatively, for two voices, three 
pointers can be used in a single larger buffer, with 
the middle pointer used as a trailing pointer for the 
first voice, and a leading pointer for the second 
voice. For a given amount of memory this allows a 
larger value of p for one voice, as long as the other 
voice has a small value of p. 

Slurring works better with the circular-buffer 
technique than with the decreasing-counter tech- 
nique. Increases in p merely tap more of the pre- 
vious samples, instead of tapping undefined (though 
probably usable) values past the end of the table. 
With the circular buffer, slurring to a subharmonic 
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(new p a multiple of its orginal value) is essentially 
the same as the harmonic trick, since no energy is 
introduced at the new fundamental. To slur a sub- 
harmonic, the algorithm first slurs to an intermedi- 
ate note, waits about a period, and then slurs to the 
final pitch. 

Average sampling rate can be increased by taking 
as much code as possible out of the innermost loop. 
For example, the harmonic trick is faster than de- 
cay stretching, because it only takes extra time 
during wavetable loading (between notes), not dur- 
ing notes. 

Most software implementations require a timing 
counter to determine when to stop a note and read 
in new parameters. This counter could be decre- 
mented and tested on every sample to get very pre- 
cise timing control. An alternative method is to 
subtract the buffer size every time the pointer 
wraps around. In the decreasing-counter technique, 
this is particularly attractive because there is plenty 
of spare time during the wraparound. 

Using small word sizes (like 8 bits) makes round- 
off error a serious problem. In the algorithms de- 
scribed in this paper, round-off error is not random 
but rather a consistent rounding down of the sam- 
ples. This effect significantly reduces the decay 
time of the fundamental frequency (compared to 
the theoretical decay time or to the decay time 
when the algorithm is computed with much larger 
word sizes). The effect can almost be eliminated by 
randomly adding 0 or 1 to Y,_, + Yt-p-, before divid- 

ing by 2. This dither technique lengthens the final 
decay of the fundamental roughly back to its the- 
oretical decay time, without appreciably lengthen- 
ing the initial attack of the tone. 

Since the round-off error is consistently in the 
same direction, it introduces a dc drift to the decay. 
This is not serious, because the algorithm is guar- 
anteed not to cause arithmetic overflow (the usual 
danger with dc drift). Dithering reduces the drift 
considerably by converting it to a random walk, but 
does not entirely eliminate it. The dc component 
can cause clicks if a voice is silenced by being set to 
some constant value (such as 0). In a one-voice im- 
plementation, the simplest way to silence a voice 
without clicks is to stop sending new values to the 
DAC, letting it remain at the last value it received. 

Another way to silence a note is to change p to a 
very small value (such as 2), producing almost in- 
stantaneous decay. 

Analysis of the Plucked-String Algorithm 

What makes the simple plucked-string algorithm 
sound so realistic? How can we predict how long 
notes will last? To answer these questions, we have 
to look at the decay of the overtones. From listen- 
ing to the output of the algorithm, it is clear that 
the higher harmonics die very quickly, while the 
fundamental and the lower harmonics last a long 
time. Low notes last much longer than high notes. 

It would be interesting to compare the theoretical 
analysis of our synthesis technique with an existing 
analysis of a guitar, lute, mandolin, or other string 
instrument. Unfortunately, we could not find a pub- 
lished analysis and did not have the tools to per- 
form our own analysis. Some previous work has 
been done using physical models for synthesizing 
string sounds (Hiller and Ruiz 1971), but these 
models do not help to explain the high quality of 
the sound produced with our technique. 

Before plunging into the mathematics, it's worth 
taking an informal look at what is happening to the 
harmonics. Essentially, one pass (p samples) takes 
what is in the wavetable and averages it with an- 
other copy delayed by one sample time. For sinu- 
soids with long periods, one sample time is a very 
small phase difference, while for short periods it is 
a large difference. Averaging two sinusoids with a 
small phase difference decreases the amplitude 
slightly, while averaging two with a large phase dif- 
ference (up to half a period) causes much more can- 
cellation. Since the phase difference results from a 
time difference of one sample, it is always less than 
half a period for frequencies up to the Nyquist 
frequency. 

The informal argument can be made more ex- 
plicit if we give estimates of the decay rates of the 
harmonics (Jaffe and Smith 1983). However, by bor- 
rowing some techniques from digital-filter design, 
we can compute both the decay rates and the fre- 
quencies of the overtones accurately and see how 
good the simpler approximations are. If we view the 
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algorithm as a digital filter with no input, the over- 
tones and their decay rates correspond to poles in 
the z-transform of the impulse response of the fil- 
ter. More information on z-transform techniques 
can be found in the literature (Moore 1978; Anto- 
niou 1979). The decay time of a partial is inversely 
proportional to the log of the magnitude of the cor- 
responding pole, and the frequency is proportional 
to the argument of the pole. Writing the location of 
pole in polar form as aei' allows us to write the fre- 
quency and decay-time constant of the correspond- 
ing overtone: 

f= fs& 
27r 

-1 
D= 

fsln a 

The decay time is the time it takes for the partial 
to decay to 1/e of its initial amplitude. In audio 
work, the time it takes to decay 60 db is often used 
instead. To get the 60-db decay time, we multiply 
D by In 1000 = 6.908. 

We can obtain the z-transform of the impulse re- 
sponse from the recurrence relations by using the 
standard techniques for digital filter analysis: 

1 
(z-'+ 1)z- 

_ 1+z 
1 - z- z-P 

The poles of the z-transform are the roots of 
2zp+l - z - 1 = 0. There is only one zero at 
z = -1 (corresponding to the Nyquist frequency 
1/2f). The roots are easy to approximate if we rear- 
range the equation to be 2zp+l/2 = Z1/2 + z-1/2. Re- 
placing z by aeli gives us 

2aP+ 1/2eio(p+ 1/2) = a 1/2ei(w/2) + a-1/2e-i()/2) 

= V a + a-' + 2 cos to *ei? 

for some angle 0. Looking at just the imaginary 
parts of the right-hand sides, we get 

V/ a + a-l + 2 cos cto /sin = 2 - a- sin 

Approximations are easily found if we assume 

that a is only slightly less than 1. This assumption 
is easily verified numerically. If a = 1 - s, then 

a + a-' = 2 + 82 + S3 + . . . x 2 

a1/2 - a-1/2 = - E2/8 - .. O. 

This gives us that sin 0 O0, so ei'P+ 1/2) = ei' 1, 
which we can solve for co to get a first approxima- 
tion of the frequency of the nth partial: 

0 + 27rn 27rn 
1 1 

P+- P+ 2 2 2 

Since V2 + 2 cos w = 2 cos w/2, the magnitude 
of the pole is 2aP+ /2 = 2 cos o/2. Solving for a, we 
get an approximation for the decay time of the nth 
harmonic: 

a = cos l/(+ 1/2) 
CO/ 227rn l/(p+1/2) 

= cos 
2p + 1 

1 
-1 P+2 

D fs In a 2Trn 
-ff In cos 2p + 

These estimates are the same as the ones ob- 
tained by less formal analysis. For large p and small 
n, they are quite accurate (for p = 240 and n = 1 
the magnitude and frequency estimates are both 
correct to seven significant figures). 

More accuracy can be obtained by using these es- 
timates as starting values for iterative improve- 
ment. The simplest technique is to use a few 
iterations of Newton's method to improve the ap- 
proximations for the poles: 

2pzP+i + 1 

2(p + 1)zP- 1 

For a more intuitive grasp of the relationships be- 
tween p, n, and decay time, it is worthwhile to ex- 
pand the decay-time estimate in powers of n: 

1 (2p + 1)3 2p + 1 
D = 

f 47r2n2 - 6 

47r2n2 _ 
15(2p + 1) -. 

Roughly speaking, decay time increases as p3, and 
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decreases as n-2. Appendix 1 provides a tabulation 
of decay-time constant, estimated-time constant, 
and the first term of the power series for various 
values of p and n. For most purposes, the first term 
of the power series is an accurate enough estimate 
of the decay time. 

The frequency estimates for the overtones are 
purely harmonic. It is interesting to examine how 
much inharmonicity is actually present. This re- 
quires estimating 0 somewhat more accurately. If 
we replace a + a-' by 2 as before, replace a1l2 by 
(cos 0/2)l'/2p+l , and rearrange the equation involving 
sin 0, we get 

. 2 1/(2p + 1) 
0 sin- -2 tan - (cos - - 

( 

O 

f ) -1/{2P+1? )) 

Expanding by powers of w gives 

j3 O 
5 

0 (0) - Ct) + 
16(2p + 1) 128(2p + 1) + 

Plugging in our previous approximation for w, com- 
puting 6, then recomputing o gives us 

47rn 8 T3n3 
2p + 1 (2p + 1)5 

Appendix 2 tabulates the frequency of the pure har- 
monic, the improved estimate of w, the frequency 
obtained by using Newton's method to refine the 
estimate of the pole, and the inharmonicity of the 
overtone. It can be seen that (except for small val- 
ues of p) the overtones are almost pure harmonics. 

The frequencies and decay times for the 1-2-1 
weighting algorithm can be analyzed in a similar 
fashion. The partials are pure harmonics, and the 
decay times are about half the decay times for cor- 
responding partials obtained using the basic 
algorithm. 

Analysis of the Drum Algorithm 

Since the drum algorithm produces aperiodic sig- 
nals, we need to use different tools to analyze it. 
Instead of amplitudes of overtones, let's look at the 

rms amplitude. Root-mean-square amplitude is the 
square root of the expected value of the square of 
the amplitude = VE(Y2). Squaring the recurrence 
relation for the drum algorithm yields 

E(Y2) = 4 E(Y,2 ) + 1 
E(Y2 P-) + 2 E(Y,_pY _p_). 

Since Yt,_ and Y,_p_, have independent signs, 
E(Yt,_Y,t_ ,) = 0. This reduces the recurrence 
relation to 

1 
E(Y2)= (E( Y, ) + E(Y2_,_, ). 

Note that for -p < t < 0, E( Y2) = A2. If we make 
the simplifying assumption that E(Y2 ,) is approx- 
imately E(Y2 P_,), we get 

1 
E(Yt) 2 E(Y2,) = 2-[t'/PA2 

We can improve this estimate somewhat by 
changing our assumption that E(Y2 ,) is nearly the 
same as E( Y2 p-). If we instead assume that E( Y2) 
decays exponentially, we can express E( Y2) in the 
form 2atA2. To compute a, we plug into the pre- 
vious recurrence relation, getting 

2atA2 = I 
(2a(t-pA2 + 2a(t-p-1)A2) 4 

This can be simplified to 

1 
2"a = I 

(1 + 2-). 

Since 1 + 2- a 2(2)-'2, we can conclude that 

E( Y2) 2 2-2t/(2p+lA2 

and 

rms Yt z 2- t'/2p+ A. 

This is not a complete analysis of the drum al- 
gorithm, since the absolute values of successive 
values are correlated, as are the absolute values of 
samples p apart. Experiments still need to be done 
to determine whether there is a perceptual dif- 
ference between the drum algorithm and a Gaus- 
sian noise source with an exponentially decaying 
envelope. 
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Conclusions and Future Research 

We have developed simple but powerful algorithms 
that can be implemented on a variety of different 
processors and synthesizers. They allow program- 
mers and musicians to experiment with computer 
music using inexpensive equipment. The algo- 
rithms do not have the versatility of FM synthesis 
or additive synthesis, but provide surprisingly rich 
timbres. Readers interested in commercial appli- 
cation of these algorithms should contact the Office 
of Technology Licensing at Stanford University 
about licensing agreements. 

In addition to the problems mentioned in the 
main body of the paper, there are still a lot of ques- 
tions that need answering. For example, what 
sounds can be achieved by using the guitar decay 
algorithm as a digital filter to produce a tuned re- 
verberator? Or by cross-coupling two strings at 
slightly different pitches? What about more compli- 
cated modifiers in the feedback loop (two delay- 
and-mix units instead of one, allpass filters, and so 
on)? What about locking together two voices (same 
initial load) with opposite amplitudes so that they 
cancel each other, then letting them drift apart by 
using independent probabilistic decay stretching? 
Some of these problems are examined by Jaffe and 
Smith (1983); others are being investigated with the 
Digitar chip. 

Those interested in mathematical analyses could 
probably improve the current analyses a bit, and 
other variants have yet to be analyzed. A good ap- 
proximation for the poles of the general two-point 
recurrence would be particularly welcome. It would 
also be interesting to convert the recurrence rela- 
tions to differential equations, and to assign a phys- 
ical interpretation. Techniques for taking the z- 
transform of a probabilistic algorithm are needed to 
perform a proper analysis of decay stretching. 
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Appendix 1: Decay-Time Constants 

The decay time is the time (in seconds, sampling 
rate = 20 KHz) it takes for harmonic n to decay to 
1/e of its initial amplitude, using the plucked-string 
algorithm (with periodicity parameter p). The first 
column in the table is a crude estimate of decay 
time, calculated from the first term of the power- 
series expansion (see the text): 

(2p + 1)3 
47r2n2f, 

The second column is the estimate from which the 
power series was derived: 

1 
P4+ 

2n 
27rn 

-f ln cos 2+ 1 

The third column is computed from the poles of 
the z-transform for the plucked-string algorithm 
(the roots of 2zp+l - z - 1). To compute the table, 
the poles were estimated by 

COS 2 2/(2p + 1 Cos 
2I + 1 

e 
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The estimates were then refined by iterating New- 
ton's method until successive approximations dif- 
fered by less than 10-6. The log magnitude of the 

pole was divided by fs to get the table entry. 

Crude Better Refined 
p n estimate estimate estimate 

2 1 .0002 .0001 .0001 
3 1 .0004 .0004 .0004 
4 1 .0009 .0008 .0009 
4 2 .0002 .0001 .0002 

30 1 .2875 .2870 .2869 
30 2 .0719 .0714 .0714 
30 3 .0319 .0314 .0314 
60 1 2.2437 2.2427 2.2416 
60 2 .5609 .5599 .5599 
60 3 .2493 .2483 .2483 
60 4 .1402 .1392 .1392 

120 1 17.7281 17.7261 17.8847 
120 2 4.4320 4.4300 4.4326 
120 3 1.9698 1.9678 1.9682 
240 1 140.9436 140.9396 146.4811 
240 2 35.2359 35.2319 34.8357 
240 3 15.6604 15.6564 15.6683 
240 4 8.8090 8.8050 8.7606 
240 8 2.2022 2.1982 2.2016 
240 15 .6264 .6224 .6225 
240 30 .1566 .1525 .1525 
240 60 .0392 .0349 .0349 
240 120 .0098 .0021 .0027 
480 1 1124.0365 1124.0285 1187.5162 
480 2 281.0091 281.0011 298.7312 
480 3 124.8929 124.8849 134.1789 
480 4 70.2523 70.2443 67.3967 
480 8 17.5631 17.5551 17.5233 

Appendix 2: Frequencies of Overtones 

The table in this appendix gives frequencies (in 
hertz, with a sampling rate of 20 KHz) for various 
overtones of the plucked-string algorithm. The first 
column is the simple harmonics of l/(p + 1/2); the 
second is the improved estimate, including the n3 
correction term; the third is from Newton's 
method, using the second estimate as a starting 
point; the fourth is the deviation of the actual fre- 
quency from the pure harmonic (in cents). (Note: n 
is the number of the harmonic, and p is the peri- 
odicity parameter.) 
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p n Harmonic Corrected Actual Inharmonicity 

2 1 8000.000 7747.338 7500.000 -111.7313 
3 1 5714.286 5667.307 5642.389 -21.9205 
4 1 4444.444 4431.073 4427.170 -6.7421 
4 2 8888.889 8781.918 8507.279 -75.9665 

30 1 655.738 655.737 655.737 -.0025 
30 2 1311.475 1311.468 1311.468 -.0101 
30 3 1967.213 1967.188 1967.187 -.0233 
60 1 330.579 330.578 330.578 -.0002 
60 2 661.157 661.157 661.157 -.0006 
60 3 991.736 991.735 991.735 -.0015 
60 4 1322.314 1322.312 1322.312 -.0026 

120 1 165.975 165.975 165.975 .0000 
120 2 331.950 331.950 331.950 .0000 
120 3 497.925 497.925 497.925 -.0001 
240 1 83.160 83.160 83.160 .0000 
240 2 166.320 166.320 166.320 .0000 
240 3 249.480 249.480 249.480 .0000 
240 4 332.640 332.640 332.640 .0000 
240 8 665.281 665.281 665.281 .0000 
240 15 1247.401 1247.401 1247.401 -.0001 
240 30 2494.802 2494.802 2494.802 -.0006 
240 60 4989.605 4989.598 4989.596 -.0033 
240 120 9979.210 9979.157 9965.363 -2.4038 
480 1 41.623 41.623 41.623 .0000 
480 2 83.247 83.247 83.247 .0000 
480 3 124.870 124.870 124.870 .0000 
480 4 166.493 166.493 166.493 .0000 
480 8 332.986 332.986 332.986 .0000 
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